scholarly journals Mechanical and structural properties of composites made from recycled and virgin polyethylene terephthalate (PET) and metal chip or mesh wire

2019 ◽  
Vol 299 ◽  
pp. 06007
Author(s):  
Mircea Aurelian Antoniu Rusu ◽  
Sever-Adrian Radu ◽  
Catalin Moldovan ◽  
Codruta Sarosi ◽  
Ionela Amalia Mazilu (Moldovan) ◽  
...  

Although polyethylene terephthalate (PET) is a champion of recycling, intense research is being done to find new solutions for using recycled plastic. This study aims to characterize the mechanical andstructural properties (SEM- scanning electron microscopy) of products made from recycled metal swarf or mesh wire with recycled plastic (PET) in comparison with virgin plastic. Samples manufactured from virgin and recycled PET are made by pressing and high temperature. The loss of mechanical properties ofproducts made from recycled plastic is a major drawback that influences their use. SEM images confirm that the dispersion and distribution of the PET phase is not very uniform. By addition of virgin plastic in various compositions with recycled plastic, processing parameters and mechanical properties can be optimized.

2015 ◽  
Vol 805 ◽  
pp. 131-138
Author(s):  
Martin Löhner ◽  
Dietmar Drummer

Reaction injection molding is a plastic processing method to produce net shape parts using reactive systems. By integrating semi-finished products as inserts, complex multi-layer parts can be generated in highly integrative and energy efficient processes. The material by far mostly used is polyurethane, a polymer which results from the reaction of isocyanate and polyol. By adding blowing agents, like for example water, to the polyol component, foamed parts can be realized. In contrast to thermoplastic injection molding a chemical reaction takes part during molding within the cavity. Therefore the processing parameters have a significant effect on this chemical reaction and on the properties of the finished part.In this work the influences of different processing parameters like for example mold temperature and injection volume on the resulting foam structure are investigated for reaction injection foam molding. Therefore multi-layer parts based on polyurethane materials (thermoplastic and reactive) were molded varying relevant processing parameters. The foaming took place within an open cavity. The resulting foam structures were characterized using scanning electron microscopy (SEM). Additional the multi-layer parts were characterized mechanically to reveal the resulting effects on the mechanical properties of parts containing a foamed reactive polyurethane component.


2017 ◽  
Vol 898 ◽  
pp. 2134-2142
Author(s):  
Yu Fei Hu ◽  
Jian Zhang ◽  
Biao Wang ◽  
Xue Na Zhang

Unidirectional carbon fiber (CF) / Polyamide 6 (PA6) composites were prepared by stacking fabrics method. Due to the effect of the textile structure and rough surface of PA6 fabrics, slipping of carbon fibers (CFs) during the stacking process was prevented and uniformity of impregnation was improved. Meanwhile, the usage of PA6 fabrics resulted in the minimum level of void content of composites, which improved the mechanical properties of composites. Additionally, the void content of materials was associated with the mechanical properties of composites. The flexural strength of composite reached 819.58 MPa when its void content was 3.49%. Moreover, a model based on Darcy’s law was developed to simulate the impregnation behavior of PA6 in CFs which was made by stacking fabrics method. The resin flow was observed by using optical microscopy. The evolution of void content in composites was related to the processing parameters (holding time, processing temperature and processing pressure).The comparison between the experimental and simulated data showed that the model was reliable to describe the impregnation process.


2008 ◽  
Vol 396-398 ◽  
pp. 587-590
Author(s):  
Marize Varella de Oliveira ◽  
Magna Monteiro Schaerer ◽  
Robson Pacheco Pereira ◽  
Ieda Maria V. Caminha ◽  
Silvia R. A. Santos ◽  
...  

In the present work, mechanical properties of a stoichiometric hydroxyapatite (HA), synthesized by hydrothermal method, with 1.66 Ca/P molar ratio are investigated as a function of the processing parameters. Cylindrical samples were processed by uniaxial compacting, followed by sintering, aiming to obtain high density HA samples. Density values were obtained by the geometric method and SEM images were taken from HA samples in order to characterize their topography and to determine the grain size for each set of samples. Vickers micro-hardness was measured for each set of samples. Compressive strength of cylindrical samples with 2.0 mean diameter/height ratio was measured reporting load to failure divided by the cross-sectional area of the samples. Vickers micro-hardness and compaction strength values of the samples were found to be in agreement with the relative density and grain size values.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 902 ◽  
Author(s):  
Galal Sherif ◽  
Dilyus I. Chukov ◽  
Victor V. Tcherdyntsev ◽  
Valerii G. Torokhov ◽  
Dmitry D. Zherebtsov

The effect of thermal treatment of glass fibers (GF) on the mechanical and thermo-mechanical properties of polysulfone (PSU) based composites reinforced with GF was investigated. Flexural and shear tests were used to study the composites’ mechanical properties. A dynamic mechanical analysis (DMA) and a heat deflection temperature (HDT) test were used to study the thermo-mechanical properties of composites. The chemical structure of the composites was studied using IR-spectroscopy, and scanning electron microscopy (SEM) was used to illustrate the microstructure of the fracture surface. Three fiber to polymer ratios of initial and preheated GF composites (50/50, 60/40, 70/30 (wt.%)) were studied. The results showed that the mechanical and thermo-mechanical properties improved with an increase in the fiber to polymer ratio. The interfacial adhesion in the preheated composites enhanced as a result of removing the sizing coating during the thermal treatment of GF, which improved the properties of the preheated composites compared with the composites reinforced with initial untreated fibers. The SEM images showed a good distribution of the polymer on the GF surface in the preheated GF composites.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 233 ◽  
Author(s):  
Abdulhakim Almajid ◽  
Rolf Walter ◽  
Tim Kroos ◽  
Harry Junaidi ◽  
Martin Gurka ◽  
...  

The concept of microfibrillar composites (MFCs) is adopted to produce composites of polyethylene terephthalate (PET) fiber-reinforced polypropylene (PP) materials. The two polymers were dry mixed with PET content ranging from 22 to 45 wt%. The PET has been used as a reinforcement to improve the mechanical properties of composites. The relationship between the morphology of the MFC structure and the mechanical behavior of the MFC filament was investigated. Analysis of the structure and mechanical behavior helped to understand the influence of the stretching ratio, extruder-melt temperature, stretching-chamber temperature, and filament speed.


2016 ◽  
Vol 672 ◽  
pp. 247-256 ◽  
Author(s):  
Alina Sionkowska ◽  
Beata Kaczmarek ◽  
Paulina Trokowska ◽  
Iulian Vasile Antoniac

In this paper several properties of new materials based on polymer blends were studied. The properties of composites made of the blends of chitosan and collagen with addition of poly (methyl methacrylate) and hydroxyapatite were investigated. Mechanical properties, thermal analysis, FTIR spectra and SEM images were obtained for different blends of chitosan/collagen in weight ratios 75/25, 50/50, 25/75. Poly (methyl methacrylate) was used in ratios 15, 50 and 85 wt% based on chitosan. The influence of the addition of hydroxyapatite to the polymer blends on their properties was tested. The results showed that the amount of components can influence on the mechanical properties observed for obtained materials.


2017 ◽  
Vol 50 (1) ◽  
pp. 13-35 ◽  
Author(s):  
Sayed Kamal Taghavi ◽  
Hamzeh Shahrajabian ◽  
Hamid Mohammad Hosseini

In this study, for recycling polyethylene terephthalate, a blend of recycled polyethylene terephthalate (RPET) and high-density polyethylene (HDPE) with maleic anhydride polyethylene (MAPE) and maleic anhydride-grafted styrene–ethylene/butylene–styrene (SEBS-g-MA) were used. The effect of compatibilizers in RPET was investigated by mechanical test (tensile and flexural tests), thermal test (differential scanning calorimetry (DSC)), and melt flow index test. The morphology of fracture surface of samples was investigated by scanning electron microscopy (SEM). The mechanical tests showed that elongation at break point and the fracture energy of samples with composition of RPET (70 wt%)/HDPE (15 wt%)/MAPE (15 wt%) and RPET (75 wt%)/HDPE (10 wt%)/SEBS-g-MA (15 wt%) increased significantly. Results of DSC test and SEM photography showed that ternary blend of RPET/HDPE/MAPE has better compatibility compared with RPET/HDPE/SEBS-g-MA. SEM images showed that MAPE provides better bonding between RPET and HDPE compared with SEBS-g-MA. MAPE was dispersed in RPET better than SEBS-g-MA.


2021 ◽  
Vol 30 ◽  
pp. 263498332110000
Author(s):  
Helge Schneevogt ◽  
Kevin Stelzner ◽  
Buket Yilmaz ◽  
Bilen Emek Abali ◽  
André Klunker ◽  
...  

Herein, the effects of recycled polymers on the mechanical properties of additively manufactured specimens, specifically those derived by fused deposition modelling, are determined. The intention is to investigate how 3D-printing can be more sustainable and how recycled polymers compare against conventional ones. Initially, sustainability is discussed in general and more sustainable materials such as recycled filaments and biodegradable filaments are introduced. Subsequently, a comparison of the recycled filament recycled Polyethylene terephthalate (rePET) and a conventional Polyethylene terephthalate with glycol (PETG) filament is drawn upon their mechanical performance under tension, and the geometry and slicing strategy for the 3D-printed specimens is discussed. Finally, the outcomes from the experiments are compared against numerically determined results and conclusions are drawn.


2021 ◽  
Vol 11 (16) ◽  
pp. 7338
Author(s):  
Alaeddine Oussai ◽  
Zoltán Bártfai ◽  
László Kátai

Fused Deposition Modelling (FDM) is the most common 3D printing technology. An object formed through continuous layering until completion is known as an additive process while other processes with different methods are also relevant. In this paper, mechanical properties were analysed using two distinct kinds of printed polyethylene terephthalate (PET) as tensile test specimens. The materials used consist of recycled PET and virgin PET. An assessment of all the forty test pieces of both kinds of PET was undertaken. A comparison of the test samples’ tensile strength values, difference in stress-strain curves, and elongation at break was also carried out. The reasoning behind the fracturing of test pieces that printed with different settings is presented in part by the depiction of the fractured specimens following the tensile test. An optimal route was revealed to be 3D printing with recycled PET, as per the mechanical testing. The hardness of the recycled filament decreased to 6%, while the tensile strength and shear strength increased to 14.7 and 2.8%, respectively. Nonetheless, no changes occurred to the tensile modulus elasticity. Despite notable differences being observed in the results of the recycled PET filament, no substantial differences were found prior or post-recycling in the mechanical properties of the PET filament. In conclusion, the demand for improved recycled 3D printing filament technologies is heightened due to the comparable mechanical features of the specimens of both the 3D printed recycled and virgin materials. With tensile strength figures reaching as high as 43.15MPa at Recycled PET and 3.12% being the greatest elongation at 40% Recycled PET, 100% Recycled is the ideal printing setting.


Sign in / Sign up

Export Citation Format

Share Document