scholarly journals Immune profiling of Mycobacterium tuberculosis-specific T cells in recent and remote infection

EBioMedicine ◽  
2021 ◽  
Vol 64 ◽  
pp. 103233
Author(s):  
Cheleka A.M. Mpande ◽  
Virginie Rozot ◽  
Boitumelo Mosito ◽  
Munyaradzi Musvosvi ◽  
One B. Dintwe ◽  
...  
2020 ◽  
Author(s):  
Cheleka A.M. Mpande ◽  
Virginie Rozot ◽  
Boitumelo Mosito ◽  
Munyaradzi Musvosvi ◽  
One B Dintwe ◽  
...  

AbstractBackgroundRecent Mycobacterium tuberculosis (M.tb) infection is associated with a higher risk of progression to tuberculosis disease, compared to persistent infection after remote exposure. However, current immunodiagnostic tools fail to distinguish between recent and remote infection. We aimed to characterise the immunobiology associated with acquisition of M.tb infection and identify a biomarker that can distinguish recent from remote infection.MethodsHealthy South African adolescents were serially tested with QuantiFERON-TB Gold to define recent (QuantiFERON-TB conversion <6 months) and persistent (QuantiFERON-TB+ for >1.5 year) infection. We characterized M.tb-specific CD4 T cell functional (IFN-γ, TNF, IL-2, CD107, CD154), memory (CD45RA, CCR7, CD27, KLRG-1) and activation (HLA-DR) profiles by flow cytometry after CFP-10/ESAT-6 peptide pool or M.tb lysate stimulation. We then assessed the diagnostic performance of immune profiles that were differentially expressed between individuals with recent or persistent QuantiFERON-TB+.FindingsCFP-10/ESAT-6-specific CD4 T cell activation but not functional or memory phenotypes distinguished between individuals with recent and persistent QuantiFERON-TB+. In response to M.tb lysate, recent QuantiFERON-TB+ individuals had lower proportions of highly differentiated IFN-γ+TNF+ CD4 T cells expressing a KLRG-1+ effector phenotype and higher proportions of early differentiated IFN-γ-TNF+IL-2+ and activated CD4 T cells compared to persistent QuantiFERON-TB+ individuals. Among all differentially expressed T cell features CFP-10/ESAT-6-specific CD4 T cell activation was the best performing diagnostic biomarker of recent infection.InterpretationRecent M.tb infection is associated with highly activated and moderately differentiated functional M.tb-specific T cell subsets, that can be used as biomarkers to distinguish between recent and remote infection.


2021 ◽  
Vol 9 (6) ◽  
pp. e002181
Author(s):  
Erin F Simonds ◽  
Edbert D Lu ◽  
Oscar Badillo ◽  
Shokoufeh Karimi ◽  
Eric V Liu ◽  
...  

BackgroundGlioblastoma (GBM) is refractory to immune checkpoint inhibitor (ICI) therapy. We sought to determine to what extent this immune evasion is due to intrinsic properties of the tumor cells versus the specialized immune context of the brain, and if it can be reversed.MethodsWe used CyTOF mass cytometry to compare the tumor immune microenvironments (TIME) of human tumors that are generally ICI-refractory (GBM and sarcoma) or ICI-responsive (renal cell carcinoma), as well as mouse models of GBM that are ICI-responsive (GL261) or ICI-refractory (SB28). We further compared SB28 tumors grown intracerebrally versus subcutaneously to determine how tumor site affects TIME and responsiveness to dual CTLA-4/PD-1 blockade. Informed by these data, we explored rational immunotherapeutic combinations.ResultsICI-sensitivity in human and mouse tumors was associated with increased T cells and dendritic cells (DCs), and fewer myeloid cells, in particular PD-L1+ tumor-associated macrophages. The SB28 mouse model of GBM responded to ICI when grown subcutaneously but not intracerebrally, providing a system to explore mechanisms underlying ICI resistance in GBM. The response to ICI in the subcutaneous SB28 model required CD4 T cells and NK cells, but not CD8 T cells. Recombinant FLT3L expanded DCs, improved antigen-specific T cell priming, and prolonged survival of mice with intracerebral SB28 tumors, but at the cost of increased Tregs. Targeting PD-L1 also prolonged survival, especially when combined with stereotactic radiation.ConclusionsOur data suggest that a major obstacle for effective immunotherapy of GBM is poor antigen presentation in the brain, rather than intrinsic immunosuppressive properties of GBM tumor cells. Deep immune profiling identified DCs and PD-L1+ tumor-associated macrophages as promising targetable cell populations, which was confirmed using therapeutic interventions in vivo.


2014 ◽  
Vol 192 (7) ◽  
pp. 2965-2969 ◽  
Author(s):  
Shunsuke Sakai ◽  
Keith D. Kauffman ◽  
Jason M. Schenkel ◽  
Cortez C. McBerry ◽  
Katrin D. Mayer-Barber ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102178 ◽  
Author(s):  
Catherine Riou ◽  
Clive M. Gray ◽  
Masixole Lugongolo ◽  
Thabisile Gwala ◽  
Agano Kiravu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document