scholarly journals Methodology for predicting the PV module temperature based on actual and estimated weather data

2022 ◽  
pp. 100182
Author(s):  
Nouar Aoun
Keyword(s):  
2019 ◽  
Vol 25 (10) ◽  
pp. 1-19
Author(s):  
Mena Safaa Mohammed ◽  
Emad Talib Hashim

Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for different weather data (solar irradiance and ambient temperature) that is gathered from October 2017 to April 2018 in the city of Baghdad. The collected data is recorded for the entire months during the time which is limited between 8:00 AM and 1:00 PM. This work demonstrates that the change in a cell temperature is directly proportional with the PV module current, while it is inversely proportional with the PV module voltage. Additionally, the output power of a PV module increases with decreasing the solar module temperature. Furthermore, the Simulink block diagram is used to evaluate the influence of weather factors on the PV module temperature by connecting to the MATLAB code. The best value from the results of this work was in March when the solar irradiance was equal to 1000 W/m2 and the results were: Isc,exp=3.015, Isc,mod=3.25 , RE=7.79 and Voc,exp=19.67 ,Voc,mod=19.9 ,RE=1.1


Author(s):  
Farid Sayedin ◽  
Azadeh Maroufmashat ◽  
Sourena Sattari

Hydrogen is considered to be the fuel of the future. It is a cleaner alternative to the fossil fuels we consume every day. Of all the different hydrogen production pathways that exist, producing the gas by utilizing the power generated by renewable energy sources has been a topic of interest for many researchers across the world. The following work focuses on minimizing the energy loss by optimizing the size and the operating conditions of an electrolyzer directly connected to a photovoltaic (PV) module at different irradiance. The hydrogen, in the proposed system, is produced using a proton exchange membrane (PEM) electrolyzer. A nonlinear method is considered, because of the complexity of the system and the variation in maximum power points (MPP) of the PV module throughout the year. A generic model has been also developed to determine the performance of photovoltaic-electrolyzer (PV/EL) system. Additionally, a whole year weather data set is employed to estimate annual electricity generation, I–V curves and MPPs of the PV module. This work also proposes a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the PV/EL system. By this approach, the optimal size and operating condition of an electrolyzer directly connected to a PV module is determined. The results demonstrate that for the given location and the PV system utilized in the study, the energy transfer efficiency of PV/EL system can reach up to 98.51%. Furthermore, it is also found that ICA algorithm quickly converges to a good solution, and by this method, deriving optimal parameters for each selected system can be possible.


2012 ◽  
Vol 512-515 ◽  
pp. 78-83
Author(s):  
Hong Bing Chen ◽  
Ping Wei

The decrease of photovoltaic (PV) cell temperature by 10 °C is expected to improve the PV electrical efficiency by 0.6-0.7% based on the reference efficiency of 15%. Different cooling liquids like air and water have been introduced to pass across the PVs to reduce the cell temperature, and thus increase the electrical efficiency. In this paper, the refrigerant R134a was used as the cooling liquid and a PV/thermal (PV/T) collector was coupled with a heat pump system acting as the evaporator, which was expected to achieve a better cooling effect and energy performance due to its low boiling temperature. A hybrid PV/T collector, made of 6 glass vacuum tube – PV module – aluminum sheet – cooper tube sandwiches connected in series, worked as the evaporator of the heat pump system. Numerical steady models were established for each component of the heat pump system and part of the PV/T collector/evaporator for predicting their energy performance under the weather data of January 14th at Tibet, China. The results showed that the maximum COP could reach up to 7.6. The daily average thermal efficiency and electrical efficiency were 0.764 and 0.104, respectively.


2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


Author(s):  
Raama Alves ◽  
Thamires Bernardes ◽  
MANOEL ANTONIO FONSECA COSTA

Sign in / Sign up

Export Citation Format

Share Document