Directly Coupled Photovoltaic-Electrolyzer System Optimization Using a Novel ICA Methodology

Author(s):  
Farid Sayedin ◽  
Azadeh Maroufmashat ◽  
Sourena Sattari

Hydrogen is considered to be the fuel of the future. It is a cleaner alternative to the fossil fuels we consume every day. Of all the different hydrogen production pathways that exist, producing the gas by utilizing the power generated by renewable energy sources has been a topic of interest for many researchers across the world. The following work focuses on minimizing the energy loss by optimizing the size and the operating conditions of an electrolyzer directly connected to a photovoltaic (PV) module at different irradiance. The hydrogen, in the proposed system, is produced using a proton exchange membrane (PEM) electrolyzer. A nonlinear method is considered, because of the complexity of the system and the variation in maximum power points (MPP) of the PV module throughout the year. A generic model has been also developed to determine the performance of photovoltaic-electrolyzer (PV/EL) system. Additionally, a whole year weather data set is employed to estimate annual electricity generation, I–V curves and MPPs of the PV module. This work also proposes a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the PV/EL system. By this approach, the optimal size and operating condition of an electrolyzer directly connected to a PV module is determined. The results demonstrate that for the given location and the PV system utilized in the study, the energy transfer efficiency of PV/EL system can reach up to 98.51%. Furthermore, it is also found that ICA algorithm quickly converges to a good solution, and by this method, deriving optimal parameters for each selected system can be possible.

2021 ◽  
Vol 11 (19) ◽  
pp. 9318
Author(s):  
Mladen Bošnjaković ◽  
Ante Čikić ◽  
Boris Zlatunić

A large drop in prices of photovoltaic (PV) equipment, an increase in electricity prices, and increasing environmental pressure to use renewable energy sources that pollute the environment significantly less than the use of fossil fuels have led to a large increase in installed roof PV capacity in many parts of the world. In this context, this paper aims to analyze the cost-effectiveness of installing PV systems in the rural continental part of Croatia on existing family houses. A typical example is a house in Dragotin, Croatia with an annual consumption of 4211.70 kWh of electricity on which PV panels are placed facing south under the optimal slope. The calculation of the optimal size of a PV power plant with a capacity of 3.6 kW, without battery energy storage, was performed by the Homer program. The daily load curve was obtained by measuring the electricity consumption at the facility every hour during a characteristic day in the month of June. As most of the activities are related to electricity consumption, repeating during most days of the year, and taking into account seasonal activities, daily load curves were made for a characteristic day in each month of the year. Taking into account the insolation for the specified location, using the Internet platform Solargis Prospect, hourly data on the electricity production of selected PV modules for a characteristic day in each month were obtained. Based on the previous data, the electricity injected into the grid and taken from the grid was calculated. Taking into account the current tariffs for the sale and purchase of electricity, investment prices, and maintenance of equipment, the analysis shows that such a PV system can pay off in 10.5 years without government incentives.


Author(s):  
Nadia Bouaziz ◽  
Arezki Benfdila ◽  
Ahcene Lakhlef

The present paper deals with the development of a simulation model for predicting the performances of a solar photovoltaic (PV) system operating under current meteorological conditions at the site location. The proposed model is based on the cell equivalent circuit including a photocurrent source, a diode, a series and shunt resistances. Mathematical expressions developed for modeling the PV generator performances are based on current-voltage characteristic of the considered modules. The developed model allows the prediction of PV cell (module) behavior under different physical and environmental parameters. The model can be extended to extract physical parameters for a given solar PV module as a function of temperature and solar irradiation. A typical 260 W solar panel developed by LG Company was used for model evaluation using Newton-Raphson approach under MATLAB environment in order to analyze its behavior under actual operating conditions. Comparison of our results with data taken from the manufacturer’s datasheet shows good agreement and confirms the validity of our model. Hence, the proposed approach can be an alternative to extract different parameters of any PV module to study and predict its performances.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Minh Long Hoang

Abstract Photovoltaic (PV) energy has become a promising energy source because the demand for electrical energy from renewable energy sources is increasing worldwide in recent decades. Due to efficiency issues, the Maximum Power Point Tracking (MPPT) has been developed to optimize the solar panel’s performance. This paper presents an MPPT model, made up of the analog component, which overcomes traditional MPPT methods’ weakness via the Perturb and observes (P&O) technique. In this case, the PV system includes a PV array, a DC/DC boost converter, a battery, and a load. The proposed method was precisely built and simulated using the Powersim, MATLAB Simulink, and SimCoupler Module. The components of the analog MPPT system were designed practically in detail. The experiment was carried out by using European Efficiency Test 50530, and the results showed the proposed model has higher efficiency over the digital MPPT technique, about 99.99% as maximum. Moreover, MPPT methods were tested under steady-state, irradiation variation, and space conditions to verify the system’s potential capability with PV module Solbian 52L.


Author(s):  
B. Manoj Kumar ◽  
Ramesh P.

With the degradation of fossil fuels, recent era witness the penetration of renewable energy sources like wind and solar energy into various electrical applications. Integration of these renewable energy sources is of prime importance as they possess zero carbon emission, environmental friendly and zero fuel cost. However, the unpredictability and unreliable nature of solar and wind motivates the combine utilization of these sources i.e. hybrid energy systems. These systems are more reliable and have better continuous production of electrical energy than using the sources individually. Combination of hybrid energy system into grid/standalone applications demands the use of power electronic interface and appropriate control strategy. In this context, this thesis aims at development of a hybrid Photovoltaic (PV)/wind energy based systems for grid connected application. PV and wind are hybridized on a DC side to avoid the synchronizing issues between the sources. However, the proposed hybrid system is integrated on distribution side of the grid with a DC/AC converter (inverter). Considering the essential need of synchronization, the control input i.e. pulses to the inverter are generated from a voltage and frequency controller i.e. Phase Lock Loop (PLL).The task of tuning the controller is formulated as an optimization problem and is solved using Particle Swarm Optimization (PSO) technique. The objective of the system is to meet the load demand and to manage the power generated from different sources at different operating conditions. Each module in the complete system is modeled on Matlab/Simulink platform. Also, the performance of the system is tested for additional utilization of battery charging.


Author(s):  
Ahmed Abdulmula ◽  
Kamaruzzaman Sopian ◽  
Norasikin Ahmad Ludin ◽  
Lim Chin Haw ◽  
Abdelnaser Elbreki ◽  
...  

This study investigates the technical and cost-effective performance of options renewable energy sources to develop a green off-grid telecommunication tower to replace diesel generators in Malaysia. For this purpose, the solar, wind, pico-hydro energy, along with diesel generators, were examined to compare. In addition, the modeling of hybrid powering systems was conducted using hybrid optimization model for energy (HOMER) simulation based on techno-economic analysis to determine the optimal economically feasible system. The optimization findings showed that the hybrid high-efficiency fixed photovoltaic (PV) system with battery followed by 2 kW pico-hydropower and battery are the optimal configurations for powering off-grid telecommunication towers in Malaysia with the lowest net present cost (NPC) and cost of energy (COE). These costs of NPC and COE are more down than diesel generator costs with battery by 17.45%, 16.45%, 15.9%, and 15.5%, respectively. Furthermore, the economic evaluation of the high-efficiency solar fixed PV panels system annual cash flow compared to the diesel generator with the battery system indicated a ten-year payback period.


2021 ◽  
Vol 11 (2) ◽  
pp. 365-373
Author(s):  
Emy Zairah Ahmad ◽  
Hasila Jarimi ◽  
Tajul Rosli Razak

Dust accumulation on the photovoltaic system adversely degrades its power conversion efficiency (PCE). Focusing on residential installations, dust accumulation on PV modules installed in tropical regions may be vulnerable due to lower inclination angles and rainfall that encourage dust settlement on PV surfaces. However, most related studies in the tropics are concerned with studies in the laboratory, where dust collection is not from the actual field, and an accurate performance prediction model is impossible to obtain. This paper investigates the dust-related degradation in the PV output performance based on the developed Artificial Neural Network (ANN) predictive model. For this purpose, two identical monocrystalline modules of 120 Wp were tested and assessed under real operating conditions in Melaka, Malaysia (2.1896° N, 102.2501° E), of which one module was dust-free (clean). At the same time, the other was left uncleaned (dusty) for one month. The experimental datasets were divided into three sets: the first set was used for training and testing purposes, while the second and third, namely Data 2 and Data 3, were used for validating the proposed ANN model. The accuracy study shows that the predicted data using the ANN model and the experimentally acquired data are in good agreement, with MAE and RMSE for the cleaned PV module are as low as 1.28 °C, and 1.96 °C respectively for Data 2 and 3.93 °C and 4.92 °C respectively for Data 3.  Meanwhile, the RMSE and MAE for the dusty PV module are 1.53°C and 2.82 °C respectively for Data 2 and 4.13 °C and 5.26 °C for Data 3. The ANN predictive model was then used for yield forecasting in a residential installation and found that the clean PV system provides a 7.29 % higher yield than a dusty system. The proposed ANN model is beneficial for PV system installers to assess and anticipate the impacts of dust on the PV installation in cities with similar climatic conditions.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3226 ◽  
Author(s):  
Nader Anani ◽  
Haider Ibrahim

This paper presents a concise discussion and an investigation of the most literature-reported methods for modifying the lumped-circuit parameters of the single-diode model (SDM) of a photovoltaic (PV) module, to suit the prevailing climatic conditions of irradiance and temperature. These parameters provide the designer of a PV system with an essential design and simulation tool to maximize the efficiency of the system. The parameter modification methods were tested using three commercially available PV modules of different PV technologies, namely monocrystalline, multicrystalline, and thin film types. The SDM parameters of the three test modules were extracted under standard test conditions (STC) using a well-established numerical technique. Using these STC parameters as reference values, the parameter adjustment methods were subsequently deployed to calculate the modified parameters of the SDM under various operating conditions of temperature and irradiance using MATLAB-based software. The accuracy and effectiveness of these methods were evaluated by a comparison between the calculated and measured values of the modified parameters.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1813 ◽  
Author(s):  
Eleonora Achiluzzi ◽  
Kirushaanth Kobikrishna ◽  
Abenayan Sivabalan ◽  
Carlos Sabillon ◽  
Bala Venkatesh

In the distribution system, customers have increasingly use renewable energy sources and battery energy storage systems (BESS), transforming traditional loads into active prosumers. Therefore, methodologies are needed to provide prosumers with tools to optimize their investments and increase business opportunities. In this paper, a stochastic mixed integer linear programming (MILP) formulation is proposed to solve for optimal sizes of prosumer assets, considering the use of a BESS and photovoltaic (PV) units. The objective is to minimize the total cost of the system, which is defined as the combination of a solar PV system investment, BESS investment, maintenance costs of assets, and the cost of electricity supplied by the grid. The developed method defines the optimal size of PV units, the power/energy capacities of the BESS, and the optimal value for initial energy stored in the BESS. Both deterministic and stochastic approaches were explored. For each approach, the proposed model was tested for three cases, providing a varying combination of the use of grid power, PV units, and BESS. The optimal values from each case were compared, showing that there is potential to achieve more economic plans for prosumers when PV and BESS technologies are taken into account.


Author(s):  
Victor Huayamave ◽  
Andres Ceballos ◽  
Carolina Barriento ◽  
Hubert Seigneur ◽  
Stephen Barkaszi ◽  
...  

Purpose Wind loading calculations are currently performed according to the ASCE 7 standard. Values in this standard were estimated from simplified models that do not necessarily take into account relevant flow characteristics. Thus, the standard does not have provisions to handle the majority of rooftop photovoltaic (PV) systems. Accurate solutions for this problem can be produced using a full-fledged three-dimensional computational fluid dynamics (CFD) analysis. Unfortunately, CFD requires enormous computation times, and its use would be unsuitable for this application which requires real-time solutions. To this end, a real-time response framework based on the proper orthogonal decomposition (POD) method is proposed. Design/methodology/approach A real-time response framework based on the POD method was used. This framework used beforehand and off-line CFD solutions from an extensive data set developed using a predefined design space. Solutions were organized to form the basis snapshots of a POD matrix. The interpolation network using a radial-basis function (RBF) was used to predict the solution from the POD method given a set of values of the design variables. The results presented assume varying design variables for wind speed and direction on typical PV roof installations. Findings The trained POD–RBF interpolation network was tested and validated by performing the fast-algebraic interpolation to obtain the pressure distribution on the PV system surface and they were compared to actual grid-converged fully turbulent 3D CFD solutions at the specified values of the design variables. The POD network was validated and proved that large-scale CFD problems can be parametrized and simplified by using this framework. Originality/value The solar power industry, engineering design firms and the society as a whole could realize significant savings with the availability of a real-time in situ wind-load calculator that can prove essential for plug-and-play installation of PV systems. Additionally, this technology allows for automated parametric design optimization to arrive at the best fit for a set of given operating conditions. All these tasks are currently prohibited because of the massive computational resources and time required to address large-scale CFD analysis problems, all made possible by a simple but robust technology that can yield massive savings for the solar industry.


2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


Sign in / Sign up

Export Citation Format

Share Document