scholarly journals Characterization Performance of Monocrystalline Silicon Photovoltaic Module Using Experimentally Measured Data

2019 ◽  
Vol 25 (10) ◽  
pp. 1-19
Author(s):  
Mena Safaa Mohammed ◽  
Emad Talib Hashim

Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for different weather data (solar irradiance and ambient temperature) that is gathered from October 2017 to April 2018 in the city of Baghdad. The collected data is recorded for the entire months during the time which is limited between 8:00 AM and 1:00 PM. This work demonstrates that the change in a cell temperature is directly proportional with the PV module current, while it is inversely proportional with the PV module voltage. Additionally, the output power of a PV module increases with decreasing the solar module temperature. Furthermore, the Simulink block diagram is used to evaluate the influence of weather factors on the PV module temperature by connecting to the MATLAB code. The best value from the results of this work was in March when the solar irradiance was equal to 1000 W/m2 and the results were: Isc,exp=3.015, Isc,mod=3.25 , RE=7.79 and Voc,exp=19.67 ,Voc,mod=19.9 ,RE=1.1

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Abdoulatif Bonkaney ◽  
Saïdou Madougou ◽  
Rabani Adamou

The sensitivity of monocrystalline solar module towards dust accumulation and cloud cover is investigated from May to August 2015 for Niamey’s environment. Two solar modules with the same characteristics have been used to assess the impacts of the dust on the solar PV module. One of the modules is being cleaned every morning and the second one was used for monitoring the effect of dust accumulation onto the surface of the unclean module for May and June. Results show that dust accumulation has a great effect on decreasing the daily energy yield of the unclean module. But this effect is a long-term effect. For the cloud cover, the effect is immediate. It was estimated that exposing the module into the environment in 23 days in June 2015 has reduced the daily energy yield by 15.29%. This limitation makes solar PV an unreliable source of power for remote devices and thus strongly suggests the challenges of cleaning the module’s surface regularly.


Author(s):  
Nadia Bouaziz ◽  
Arezki Benfdila ◽  
Ahcene Lakhlef

The present paper deals with the development of a simulation model for predicting the performances of a solar photovoltaic (PV) system operating under current meteorological conditions at the site location. The proposed model is based on the cell equivalent circuit including a photocurrent source, a diode, a series and shunt resistances. Mathematical expressions developed for modeling the PV generator performances are based on current-voltage characteristic of the considered modules. The developed model allows the prediction of PV cell (module) behavior under different physical and environmental parameters. The model can be extended to extract physical parameters for a given solar PV module as a function of temperature and solar irradiation. A typical 260 W solar panel developed by LG Company was used for model evaluation using Newton-Raphson approach under MATLAB environment in order to analyze its behavior under actual operating conditions. Comparison of our results with data taken from the manufacturer’s datasheet shows good agreement and confirms the validity of our model. Hence, the proposed approach can be an alternative to extract different parameters of any PV module to study and predict its performances.


2016 ◽  
Vol 27 (1) ◽  
pp. 28 ◽  
Author(s):  
N. Marc-Alain Mutombo ◽  
Freddie Inambao ◽  
Glen Bright

The conversion of solar irradiance into electricity by a photovoltaic module (PV) is 6– 7% of the incoming energy from the sun depending on the type of technology and the environmental parameters. More than 80% of incoming energy from the sun is reflected or absorbed by the solar module. The fraction of energy absorbed increases with solar cell temperature and the cells’ efficiency drops as a consequence. The efficiency of a PV module is improved by combining a PV module and a thermal collector in one unit, resulting in a hybrid photovoltaic and thermal collector (PV/T). The purpose of this paper is to present the behavior a thermosyphon hybrid PV/T when exposed to variations of environmental parameters and to demonstrate the advantage of cooling photovoltaic modules with water using a rectangular channel profile for the thermal collector. A single glazed flat-box absorber PV/T module was designed, its behavior for different environmental parameters tested, the numerical model developed, and the simulation for particular days for Durban weather run. The simulation result showed that the overall efficiency of the PV/T module was 38.7% against 14.6% for a standard PV module while the water temperature in the storage tank reached 37.1 °C. This is a great encouragement to the marketing of the PV/T technology in South Africa particularly during summer, and specifically in areas where the average annual solar irradiance is more than 4.70 kWh/m²/day.


2021 ◽  
Vol 13 (11) ◽  
pp. 6364
Author(s):  
June Raymond L. Mariano ◽  
Yun-Chuan Lin ◽  
Mingyu Liao ◽  
Herchang Ay

Photovoltaic (PV) systems directly convert solar energy into electricity and researchers are taking into consideration the design of photovoltaic cell interconnections to form a photovoltaic module that maximizes solar irradiance. The purpose of this study is to evaluate the cell spacing effect of light diffusion on output power. In this work, the light absorption of solar PV cells in a module with three different cell spacings was studied. An optical engineering software program was used to analyze the reflecting light on the backsheet of the solar PV module towards the solar cell with varied internal cell spacing of 2 mm, 5 mm, and 8 mm. Then, assessments were performed under standard test conditions to investigate the power output of the PV modules. The results of the study show that the module with an internal cell spacing of 8 mm generated more power than 5 mm and 2 mm. Conversely, internal cell spacing from 2 mm to 5 mm revealed a greater increase of power output on the solar PV module compared to 5 mm to 8 mm. Furthermore, based on the simulation and experiment, internal cell spacing variation showed that the power output of a solar PV module can increase its potential to produce more power from the diffuse reflectance of light.


2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S150-S151
Author(s):  
Paul J Chestovich ◽  
Richard Z Saroukhanoff ◽  
Syed F Saquib ◽  
Joseph T Carroll ◽  
Carmen E Flores ◽  
...  

Abstract Introduction In the desert climates of the United States, plentiful sunlight and high summer temperatures cause significant burn injuries from hot pavement and other surfaces. Although it is well known that surfaces reach temperatures sufficient to cause full-thickness burns, the peak temperature, time of day, and highest risk materials is not well described. This work measured continuous temperature measurements of six materials in a desert climate over a five-month period. Methods Six different solid materials common in an urban environment were utilized for measurement. Asphalt, brick, concrete, sand, porous rock, and galvanized metal were equipped with thermocouples attached to a data acquisition module. All solid materials except metal were placed in a 2’x2’x3.5” form, and identical samples were placed in both shade and direct sunlight. Ambient temperature was recorded, and sunlight intensity was measured using a pyranometer. Measurement time interval was set at three minutes. A computational fluid dynamics (CFD) model was created using Star CCM+ to validate the data. Contour plots of temperature, solar irradiance, and time of day were created using MiniTab for all surfaces tested. Results 75,000 temperature measurements were obtained from March through August 2020. Maximum recorded temperatures for sunlight-exposed samples of porous rock was 170 F, asphalt 166 F, brick 152 F, concrete 144 F, metal 144 F, and sand 143 F. Peak temperatures were recorded on August 6, 2020 at 2:10 pm, when ambient temperature was 120 F and sunlight intensity 940 W/m2 (Table). Temperatures ranged from 36 F - 56 F higher than identical materials in the shade at the same time. The highest daily temperatures were achieved between 2:00 pm to 4:00 pm due to maximum solar irradiance. Contour plots of surface temperature as function of solar irradiation and time of day were created for all surfaces tested. Nearly identical results obtained from the CFD models to the experimentally collected data, which validated the experimental data. Conclusions Surfaces exposed to direct, continuous sunlight in a desert climate achieve temperatures from 143 F to 170 F in the early afternoon and are high enough to cause significant injury with sufficient exposure. Porous rock reached the highest temperature, followed closely by asphalt. This information is useful to inform the public of the dangers of exposed surfaces in a desert climate.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Li

The objective of this paper is to establish the performance of 8 kWp grid-connected photovoltaic (PV) power systems based on different PV module technologies in Nanjing, China. Nanjing has a hot summer and a cold winter which are considered based on monthly average solar irradiation and ambient temperature specifically for the deployment of grid-connected PV systems. The study focuses on performance assessment of grid-connected PV systems using typical PV modules made of monocrystalline silicon (m-Si), polycrystalline silicon (p-Si), edge-defined film-fed growth silicon (EFG-Si), cadmium telluride (CdTe) thin film, copper indium selenide (CIS) thin film, heterojunction with intrinsic thin layer (HIT), and hydrogenated amorphous silicon single-junction (a-Si:H single-PV) installed on location. The yearly average energy output, PV module and system efficiency, array yield, final yield, reference yield, performance ratio, monthly average array capture losses, and system losses of seven PV module technologies are all analyzed. The results show that grid-connected PV power system performance depends on geographical location, PV module types, and climate conditions such as solar radiation and ambient temperature. In addition, based on energy output and efficiency, the HIT PV power technology can be considered as the best option and CdTe and p-Si as the least suitable options for this area. The monthly average performance ratio of the CdTe technology was higher than those of other technologies over the monitoring period in Nanjing.


2020 ◽  
pp. 90-102
Author(s):  
Trina Som ◽  
A. Sharma ◽  
D. Thakur

In the present study, performance analyses of a solar module are made through the optimal variation of solar tilt angle, pertaining to the maximum generation of solar energy. The work has been carried out for a particular location at Tripura, in India, considering three different cases on an annual basis. An intelligent behavioural based algorithm, known as artificial bee algorithm (ABC), has been implemented for finding the optimal orientation of solar angle in analysing the performance. The result shows marginal differences are obtained in producing yearly maximum solar energy for different orientations of the PV module. It has been observed that the maximum average solar energy is obtained for the case where continuous adjustment is made by rotating the plane about the horizontal east-west axis within 20° to 30° tilt angle. The computed maximum and minimum of the monthly average efficiency is 10.9% and 8.7%, respectively. Further, a comparative study has been performed in generating average solar energy through optimal tilt angle by the implementation of Perturb & Observe method (P&O). The monthly average solar power computed by P&O method resulted better in a range of 2% to 15% in comparison to that obtained by ABC. While on the other hand, the efficiency computed by ABC algorithm was 15% to 19% better than that evaluated by P&O method for all the cases studied in the present work.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


2020 ◽  
Vol 12 (17) ◽  
pp. 2793 ◽  
Author(s):  
André R. Gonçalves ◽  
Arcilan T. Assireu ◽  
Fernando R. Martins ◽  
Madeleine S. G. Casagrande ◽  
Enrique V. Mattos ◽  
...  

Several studies show the effects of lake breezes on cloudiness over natural lakes and large rivers, but only few contain information regarding large flooded areas of hydroelectric dams. Most Brazilian hydropower plants have large water reservoirs that may induce significant changes in the local environment. In this work, we describe the prevailing breeze mechanism in a Brazilian tropical hydropower reservoir to assess its impacts on local cloudiness and incoming surface solar irradiation. GOES-16 visible imagery, ISCCP database products, and ground measurement sites operated by INMET and LABREN/INPE provided data for the statistical analysis. We evaluate the cloudiness frequency assuming two distinct perspectives: spatial distribution by comparing cloudiness over the water surface and areas nearby its shores, and time analysis by comparing cloudiness prior and after reservoir completion. We also evaluated the solar irradiance enhancement over the water surface compared to the border and land areas surrounding the hydropower reservoir. The results pointed out daily average cloudiness increases moving away from the reservoir in any of the four cardinal directions. When looking at the afternoon-only cloudiness (14 h to 16 h local time), 4% fewer clouds were observed over the flooded area during summer (DJF). This difference reaches 8% during autumn (MAM) and spring (SON). Consequently, the irradiance enhancement at the water surface compared to external areas was around 1.75% for daily average and 4.59% for the afternoon-only average. Our results suggest that floating solar PV power plants in hydropower reservoirs can be an excellent option to integrate both renewable energy resources into a hybrid power generation due to the high solar irradiance in Brazilian territory combined with the prevailing breeze mechanism in large tropical water reservoirs.


Sign in / Sign up

Export Citation Format

Share Document