scholarly journals Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China

2015 ◽  
Vol 23 ◽  
pp. 1-13 ◽  
Author(s):  
Shaoqiang Wang ◽  
Kun Huang ◽  
Hao Yan ◽  
Huimin Yan ◽  
Lei Zhou ◽  
...  
2018 ◽  
Vol 18 (24) ◽  
pp. 17863-17881 ◽  
Author(s):  
Ekaterina Ezhova ◽  
Ilona Ylivinkka ◽  
Joel Kuusk ◽  
Kaupo Komsaare ◽  
Marko Vana ◽  
...  

Abstract. The effect of aerosol loading on solar radiation and the subsequent effect on photosynthesis is a relevant question for estimating climate feedback mechanisms. This effect is quantified in the present study using ground-based measurements from five remote sites in boreal and hemiboreal (coniferous and mixed) forests of Eurasia. The diffuse fraction of global radiation associated with the direct effect of aerosols, i.e. excluding the effect of clouds, increases with an increase in the aerosol loading. The increase in the diffuse fraction of global radiation from approximately 0.11 on days characterized by low aerosol loading to 0.2–0.27 on days with relatively high aerosol loading leads to an increase in gross primary production (GPP) between 6 % and 14 % at all sites. The largest increase in GPP (relative to days with low aerosol loading) is observed for two types of ecosystems: a coniferous forest at high latitudes and a mixed forest at the middle latitudes. For the former ecosystem the change in GPP due to the relatively large increase in the diffuse radiation is compensated for by the moderate increase in the light use efficiency. For the latter ecosystem, the increase in the diffuse radiation is smaller for the same aerosol loading, but the smaller change in GPP due to this relationship between radiation and aerosol loading is compensated for by the higher increase in the light use efficiency. The dependence of GPP on the diffuse fraction of solar radiation has a weakly pronounced maximum related to clouds.


2011 ◽  
Vol 8 (4) ◽  
pp. 999-1021 ◽  
Author(s):  
J. E. Horn ◽  
K. Schulz

Abstract. Non-stationary and non-linear dynamic time series analysis tools are applied to multi-annual eddy covariance and micrometeorological data from 44 FLUXNET sites to derive a light use efficiency model for gross primary production on a daily basis. The extracted typical behaviour of the canopies in response to meteorological forcing leads to a model formulation allowing for a variable influence of the environmental drivers temperature and moisture availability modulating the light use efficiency. Thereby, the model is applicable to a broad range of vegetation types and climatic conditions. The proposed model explains large proportions of the variation of the gross carbon uptake at the study sites while the optimized set of six parameters is well defined. With the parameters showing explainable and meaningful relations to site-specific environmental conditions, the model has the potential to serve as basis for general regionalization strategies for large scale carbon flux predictions.


2018 ◽  
Author(s):  
Ekaterina Ezhova ◽  
Ilona Ylivinkka ◽  
Joel Kuusk ◽  
Kaupo Komsaare ◽  
Marko Vana ◽  
...  

Abstract. The effect of an aerosol loading on solar radiation and further on photosynthesis is a relevant question for estimating climate feedback mechanisms. This effect is quantified in the present study using ground-based measurements from five remote sites in boreal and hemiboreal (coniferous and mixed) forests of Eurasia. The diffuse fraction of global radiation associated with the direct effect of aerosols, that is excluding the effect of clouds, increases with an increasing aerosol loading. The increase in the diffuse fraction of global radiation from approximately 0.11 on the days characterized by low aerosol loading up to 0.2–0.27 pertaining to relatively high aerosol loading leads to the increase in gross primary production (GPP) at all sites by 6–14 %. The largest increase in GPP (relative to the days with low aerosol loading) is observed for two types of ecosystems: a coniferous forest at the high latitudes and a mixed forest at the middle latitudes. For the former ecosystem the change in GPP due to relatively large increase in the diffuse radiation is compensated by the moderate increase in the light use efficiency. For 10 the latter ecosystem, the increase in diffuse radiation is smaller for the same aerosol loading, but the smaller change in GPP due to this relationship between radiation and aerosol loading is compensated by the higher increase in the light use efficiency. The dependency of GPP on the diffuse fraction of solar radiation has a weakly pronounced maximum related to clouds.


Sign in / Sign up

Export Citation Format

Share Document