scholarly journals The oxidative stress responses caused by phthalate acid esters increases mRNA abundance of base excision repair (BER) genes in vivo and in vitro

2021 ◽  
Vol 208 ◽  
pp. 111525
Author(s):  
Chunjiao Lu ◽  
Juanjuan Luo ◽  
Yao Liu ◽  
Xiaojun Yang
F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 279 ◽  
Author(s):  
Upasna Thapar ◽  
Bruce Demple

Since the discovery of the base excision repair (BER) system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3267-3267
Author(s):  
Samantha Zaunz ◽  
Lukas Lauwereins ◽  
Manmohan Bajaj ◽  
Beatriz Guapo Neves ◽  
Francheska Cadacio ◽  
...  

Abstract Postnatal hematopoietic stem (and progenitor) cells (HS(P)Cs) are especially vulnerable to oxidative stress, leading to early hematopoietic senescence and/or malignant transformation. Elevated intracellular reactive oxygen species (ROS) can, among others, oxidize nucleotides, and thus can result in genotoxicity and mutagenesis if left unrepaired. Oxidized bases, as well as other spontaneous single base modifications, are recognized and repaired by the base excision repair (BER) pathway. Hence, the BER pathway is crucial to maintain genome integrity. In contrast to other DNA repair pathways however, the role of BER in maintaining HSPC functionality remains enigmatic, chiefly because knockout (KO) of BER genes is in many cases embryonic lethal. BER is a complex multi-step repair process. After initial removal and excision of the damaged base, the apurinic/apyrimidinic (AP) site is processed by the AP endonuclease (APEX1) enzyme. At this point, the BER pathway branches into 2 sub-pathways, namely the short-patch (SP-BER; wherein DNA polymerase beta (Polβ), Ligase III (Lig3) together with X-ray repair cross-complementing protein 1 (Xrcc1) are active) and the long-patch BER (LP-BER; wherein Lig1, Flap Structure-Specific Endonuclease 1 (Fen1), and sometimes Polβ are active) for the repair synthesis and the gap filling steps. In this study we wished to address the role of BER in adult hematopoiesis. Therefore, we used CRISPR-Cas9 to KO different BER genes in adult bone marrow (BM) HS(P)Cs, including two genes common to the BER (sub-)pathway(s) (Apex1 and Polβ) as well as one gene in the SP-BER (Xrcc1) and one gene in the LP-BER (Lig1) pathway. The effect thereof was evaluated on HS(P)C repopulation in vivo as well as on HS(P)C expansion during long-term in vitro culture (using the culture medium described by Wilkinson et al., Nature 2019). All CRISPR-Cas9 experiments were validated using a second sgRNA targeting the selected BER genes. Lig1-KO caused in vivo HSPC dysfunction: at 20 weeks post-transplantation, significantly less Lig1 KO cells were observed in the committed progenitor (HPC) and lineage committed (Lin +) BM compartments. By contrast, KO of Xrcc1 had only minor effects on HS(P)C repopulation, but we observed increased HSC expansion and myeloid biased differentiation in some recipient mice, which might correspond to clonal hematopoiesis and is consistent with the finding of XRCC1 loss-of-function mutation in myelodysplastic patients (Joshi et al, Ann Hematol 2016). Knockout of Polβ did not affect hematopoiesis in vivo or in vitro. The most severe phenotype was observed when we knocked out Apex1, as Apex1-KO HS(P)Cs failed to repopulate irradiated recipient mice. Already after 2 weeks, significantly less Apex1 deficient cells were detected in the different blood lineages and nearly no CRISPR-Cas9 KO cells could be detected from 4 weeks onwards. This was confirmed in vitro, where reduced expansion of Apex1 KO BM cells was observed. APEX1 has two major functional activities, namely its nuclease activity, involved in BER, and its redox activity (also called Ref-1 function) important in reducing oxidized transcription factors and therefore implicated in transcriptional regulation. However, little is known regarding the nuclease and Ref-1 function(s) in primary adult hematopoietic cells. We therefore cultured BM HS(P)Cs for 1 week in the continuous presence of 2 distinct chemicals blocking the APEX1 nucleases, or 2 different chemicals inhibiting specifically the Ref-1 function. We demonstrated that both APEX1 functions are essential for hematopoiesis, even if the 2 functions appear to support the survival, expansion and maintenance of HS(P)Cs through different mechanisms. While the Ref-1 function was essential for proliferation (as both Ref-1 inhibitors cause cell cycle arrest) of all the lineages (including the Lin + cells), both inhibitors of the nuclease function affected more the expansion/survival of the less committed HS(P)Cs without leading to any cell cycle arrest. In conclusion, this study demonstrates for the first time the important role of BER genes in adult hematopoiesis, often deregulated in cancer, including hematopoietic malignancies. We observed a particularly severe phenotype upon loss of Apex1 in adult HSPCs, and ongoing studies (such as RNA sequencing analysis) should provide novel insights in underlying mechanisms of APEX1 deficiencies in HS(P)Cs. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Chemosphere ◽  
2017 ◽  
Vol 184 ◽  
pp. 795-805 ◽  
Author(s):  
Chun-Jiao Lu ◽  
Xue-Feng Jiang ◽  
Muhammad Junaid ◽  
Yan-Bo Ma ◽  
Pan-Pan Jia ◽  
...  

NAR Cancer ◽  
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aaron M Fleming ◽  
Cynthia J Burrows

Abstract Many cancer-associated genes are regulated by guanine (G)-rich sequences that are capable of refolding from the canonical duplex structure to an intrastrand G-quadruplex. These same sequences are sensitive to oxidative damage that is repaired by the base excision repair glycosylases OGG1 and NEIL1–3. We describe studies indicating that oxidation of a guanosine base in a gene promoter G-quadruplex can lead to up- and downregulation of gene expression that is location dependent and involves the base excision repair pathway in which the first intermediate, an apurinic (AP) site, plays a key role mediated by AP endonuclease 1 (APE1/REF1). The nuclease activity of APE1 is paused at a G-quadruplex, while the REF1 capacity of this protein engages activating transcription factors such as HIF-1α, AP-1 and p53. The mechanism has been probed by in vitro biophysical studies, whole-genome approaches and reporter plasmids in cellulo. Replacement of promoter elements by a G-quadruplex sequence usually led to upregulation, but depending on the strand and precise location, examples of downregulation were also found. The impact of oxidative stress-mediated lesions in the G-rich sequence enhanced the effect, whether it was positive or negative.


2020 ◽  
Vol 48 (17) ◽  
pp. 9859-9871
Author(s):  
Kaiying Cheng ◽  
Ying Xu ◽  
Xuanyi Chen ◽  
Huizhi Lu ◽  
Yuan He ◽  
...  

Abstract RecJ reportedly participates in the base excision repair (BER) pathway, but structural and functional data are scarce. Herein, the Deinococcus radiodurans RecJ (drRecJ) deletion strain exhibited extreme sensitivity to hydrogen peroxide and methyl-methanesulphonate, as well as a high spontaneous mutation rate and an accumulation of unrepaired abasic sites in vivo, indicating the involvement of drRecJ in the BER pathway. The binding affinity and nuclease activity preference of drRecJ toward DNA substrates containing a 5′-P-dSpacer group, a 5′-deoxyribose-phosphate (dRP) mimic, were established. A 1.9 Å structure of drRecJ in complex with 5′-P-dSpacer-modified single-stranded DNA (ssDNA) revealed a 5′-monophosphate binding pocket and occupancy of 5′-dRP in the drRecJ nuclease core. The mechanism for RecJ 5′-dRP catalysis was explored using structural and biochemical data, and the results implied that drRecJ is not a canonical 5′-dRP lyase. Furthermore, in vitro reconstitution assays indicated that drRecJ tends to participate in the long-patch BER pathway rather than the short-patch BER pathway.


Sign in / Sign up

Export Citation Format

Share Document