Canadian efforts to slow the spread of Emerald Ash Borer (Agrilus planipennis Fairmaire) are economically efficient

2021 ◽  
Vol 188 ◽  
pp. 107126
Author(s):  
Emily S. Hope ◽  
Daniel W. McKenney ◽  
John H. Pedlar ◽  
Kevin Lawrence ◽  
Heather MacDonald
EPPO Bulletin ◽  
2021 ◽  
Author(s):  
G. Schrader ◽  
R. Baker ◽  
Y. Baranchikov ◽  
L. Dumouchel ◽  
K. S. Knight ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Judith Mogouong ◽  
Philippe Constant ◽  
Pierre Legendre ◽  
Claude Guertin

AbstractThe microbiome composition of living organisms is closely linked to essential functions determining the fitness of the host for thriving and adapting to a particular ecosystem. Although multiple factors, including the developmental stage, the diet, and host-microbe coevolution have been reported to drive compositional changes in the microbiome structures, very few attempts have been made to disentangle their various contributions in a global approach. Here, we focus on the emerald ash borer (EAB), an herbivorous pest and a real threat to North American ash tree species, to explore the responses of the adult EAB gut microbiome to ash leaf properties, and to identify potential predictors of EAB microbial variations. The relative contributions of specific host plant properties, namely bacterial and fungal communities on leaves, phytochemical composition, and the geographical coordinates of the sampling sites, to the EAB gut microbial community was examined by canonical analyses. The composition of the phyllosphere microbiome appeared to be a strong predictor of the microbial community structure in EAB guts, explaining 53 and 48% of the variation in fungi and bacteria, respectively. This study suggests a potential covariation of the microorganisms associated with food sources and the insect gut microbiome.


2020 ◽  
Vol 96 (8) ◽  
Author(s):  
Judith Mogouong ◽  
Philippe Constant ◽  
Robert Lavallée ◽  
Claude Guertin

ABSTRACT The gut microbial communities of beetles play crucial roles in their adaptive capacities. Environmental factors such as temperature or nutrition naturally affect the insect microbiome, but a shift in local conditions like the population density on a host tree could also lead to changes in the microbiota. The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an exotic wood borer that causes environmental and economic damage to ash trees in North America. This study aimed to describe the taxonomic structure of the EAB gut microbiome and explore its potential relationship with borer population size. The number of EAB adults collected per tree through a 75 km transect from an epicenter allowed the creation of distinct classes of population density. The Gammaproteobacteria and Ascomycota predominated in bacterial and fungal communities respectively, as determined by sequencing of the bacterial 16S rRNA gene and the fungal internal transcribed spacer ITS2. Species richness and diversity of the bacterial community showed significant dependence on population density. Moreover, α-diversity and β-diversity analysis revealed some indicator amplicon sequence variants suggesting that the plasticity of the gut microbiome could be related to the EAB population density in host trees.


2011 ◽  
Vol 13 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Stephanie Sobek ◽  
Arun Rajamohan ◽  
Daniel Dillon ◽  
Robert C. Cumming ◽  
Brent J. Sinclair

2007 ◽  
Vol 33 (7) ◽  
pp. 1299-1302 ◽  
Author(s):  
Robert J. Bartelt ◽  
Allard A. Cossé ◽  
Bruce W. Zilkowski ◽  
Ivich Fraser

2020 ◽  
Vol 93 (2) ◽  
pp. 326-330 ◽  
Author(s):  
Ute Hoyer-Tomiczek ◽  
Gernot Hoch

Abstract Early detection of infestation by the emerald ash borer (EAB), Agrilus planipennis is extremely difficult; hence developing additional methods is desirable. We built on the successful use of canine scent detection for the invasive long-horned beetles Anoplophora glabripennis and Anoplophora chinensis and trained six dogs in detection of EAB. A first test series was performed to evaluate detection accuracy of five of these dogs. Seven different experimental settings were tested under single blind conditions: (1) forest nursery, (2) piles of firewood, (3) firewood on the ground, (4) ash logs on the ground, (5) old urban ash trees, (6) urban forest with ash trees and (7) natural forest with ash trees. In total, 214 positive samples were presented to the dogs, out of which 20 remained undetected. The experiments ascertained sensitivity (correct positives of all positives) ranging from 73.3 to 100 percent and specificity (correct negatives of all negatives) from 88.9 to 99.8 percent in the tested settings. This initial study demonstrates that trained dogs are able to detect EAB scent from sources such as larval galleries in bark/wood, frass, living or dead larvae or dead dry beetles. The numbers of tested dogs and test series were limited, and further studies are needed to confirm the initial results. However, the preliminary findings demonstrate the potential of the method particularly for inspection of wood or plants at entry points.


2016 ◽  
Vol 42 (6) ◽  
Author(s):  
Sara Tanis ◽  
Deborah McCullough

Emerald ash borer (EAB) (Agrilus planipennis), first identified near Detroit, Michigan, U.S., in 2002, has killed millions of ash trees (Fraxinus spp.) in 28 states and two Canadian provinces to date. Trunk injections of insecticide products containing emamectin benzoate (EB) (e.g., TREE-ageR) are often used to protect ash trees in landscapes from EAB, but wounds and potential injury resulting from injections are a concern. Researchers examined 507 injection sites on 61 trees and recorded evidence of secondary wounding (e.g., external bark cracks, internal xylem necrosis and pathogen infection). Researchers assessed 233 injection sites on 22 green ash and 24 white ash trees macro-injected with a low or a medium-high rate of EB in 2008 only, or in both 2008 and 2009. Only 12 of 233 injection sites (5%) were associated with external bark cracks and there was no evidence of pathogen infection. On 39 of the 46 trees (85%), new xylem was growing over injection sites. Researchers assessed 274 injection sites on 15 green ash trees injected annually with EB from 2008 to 2013 or injected in 2008 and again in 2011. Bark cracks were associated with four injection sites on three trees, but no evidence of injury was found on the other 12 trees. All 15 trees had new xylem laid over injection sites. Confocal laser scanning and polarizing digital microscopy were used to assess the integrity of discolored xylem tissue removed from the immediate area surrounding 140 injection sites on 61 trees. Researchers found no evidence of decay associated with discoloration.


Sign in / Sign up

Export Citation Format

Share Document