Hydraulic performance of horizontal constructed wetlands for stormwater treatment: A pilot-scale study in the Mediterranean

2021 ◽  
Vol 169 ◽  
pp. 106290
Author(s):  
Alessandro Sacco ◽  
Giuseppe Luigi Cirelli ◽  
Delia Ventura ◽  
Salvatore Barbagallo ◽  
Feliciana Licciardello
2019 ◽  
Vol 79 (2) ◽  
pp. 314-322 ◽  
Author(s):  
F. Licciardello ◽  
R. Aiello ◽  
V. Alagna ◽  
M. Iovino ◽  
D. Ventura ◽  
...  

Abstract This study aims at defining a methodology to evaluate Ks reductions of gravel material constituting constructed wetland (CW) bed matrices. Several schemes and equations for the Lefranc's test were compared by using different gravel sizes and at multiple spatial scales. The falling-head test method was implemented by using two steel permeameters: one impervious (IMP) and one pervious (P) on one side. At laboratory scale, mean K values for a small size gravel (8–15 × 10−2 m) measured by the IMP and the P permeameters were equal to 19,466 m/d and 30,662 m/d, respectively. Mean Ks values for a big size gravel (10–25 × 10−2 m) measured by the IMP and the P permeameters were equal to 12,135 m/d and 20,866 m/d, respectively. Comparison of Ks values obtained by the two permeameters at laboratory scale as well as a sensitivity analysis and a calibration, lead to the modification of the standpipe equation, to evaluate also the temporal variation of the horizontal Ks. In particular, both permeameters allow the evaluation of the Ks decreasing after 4 years-operation and 1–1.5 years' operation of the plants at full scale (filled with the small size gravel) and at pilot scale (filled with the big size gravel), respectively.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 223-230 ◽  
Author(s):  
T.A. Stentström ◽  
A. Carlander

The interest in constructed wetlands for municipal wastewater and stormwater treatment has recently increased but data for the reduction efficiency of indicator organisms are often restricted to the water phase. In a full-scale wastewater wetland in Sweden fecal coliforms and enterococci were reduced by 97-99.9% and coliphages by approximately 70%. The factors affecting the reduction are however less well understood. In two full-scale wetlands, for stormwater and wastewater treatment, an assessment has been done of the particle associated fraction of indicator organisms. No significant differences in the particle-associated numbers were seen between the inlet and the outlet of the wetlands, but the amounts of sedimenting particles varied between the two sites. In the stormwater wetland the amount of sedimenting particles at the outlet was 3% of the amount at the inlet, while the wastewater wetland had much lower particle removal efficiency. The reduction of suspended particles seems to be the main factor for bacterial elimination from the water phase, governed by vegetation and design. In the sediment, survival of presumptive E.coli, fecal enterococci, Clostridium and coliphages were long with T90-values of 27, 27, 252 and 370 days, respectively. The organisms can however be reintroduced by resuspension. Viruses in the water phase may be of main concern for a risk assessment of receiving waters.


2005 ◽  
Vol 39 (7) ◽  
pp. 1361-1373 ◽  
Author(s):  
Gabriela Vacca ◽  
Helmut Wand ◽  
Marcell Nikolausz ◽  
Peter Kuschk ◽  
Matthias Kästner

2013 ◽  
Vol 68 (10) ◽  
pp. 2271-2278 ◽  
Author(s):  
Israa Abdulwahab Al-Baldawi ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Nurina Anuar ◽  
Fatihah Suja ◽  
Mushrifah Idris

One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.


2020 ◽  
Vol 318 ◽  
pp. 124061
Author(s):  
Luping Zeng ◽  
Ran Tao ◽  
Nora Fung-yee Tam ◽  
Wenda Huang ◽  
Longzhen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document