Evaluation of Pilot-Scale Constructed Wetlands with Phragmites karka for Phytoremediation of Municipal Wastewater and Biomass Production in Ethiopia

2019 ◽  
Vol 6 (1) ◽  
pp. 65-84 ◽  
Author(s):  
Kenatu Angassa ◽  
Seyoum Leta ◽  
Worku Mulat ◽  
Helmut Kloos ◽  
Erik Meers
2017 ◽  
Vol 34 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Katarzyna Skrzypiecbcef ◽  
Magdalena H. Gajewskaad

Abstract Constructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydrophytes (aquatic and semiaquatic plants) which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible for the removal and retention of pollutants. These processes are supported by sorption, sedimentation and assimilation. Thanks to these advantages, treatment wetland systems have been used in communal management for over 50 years. In recent years, thanks to its advantages, low operational costs and high removal efficiency, there is growing interest in the use of constructed wetlands for the treatment or pre-treatment of various types of industrial wastewater. The study analyzes current use of these facilities for the treatment of industrial wastewater in the world. The conditions of use and efficiency of pollutants removal from readily and slowly biodegradable wastewater, with special emphasis on specific and characteristic pollutants of particular industries were presented. The use of subsurface horizontal flow beds for the treatment of industrial wastewater, among others from crude oil processing, paper production, food industry including wineries and distillery, olive oil production and coffee processing was described. In Poland constructed wetlands are used for the treatment of sewage and sludge from milk processing in pilot scale or for dewatering of sewage sludge produced in municipal wastewater treatment plant treating domestic sewage with approximately 40% share of wastewater from dairy and fish industry. In all cases, constructed wetlands provided an appropriate level of treatment and in addition the so-called ecosystem service.


Author(s):  
Merima Toromanovic ◽  
Jasmina Ibrahimpašić ◽  
Ljiljana Topalić-Trivunović ◽  
Ifet Šišić

Constructed wetlands, as an alternative to conventional methods, are systemsdesigned on the basis of the application of natural purification processes that take placein watery and swampy overgrown habitats, with certain microbiological groups. In thewastewater treatment process various types of constructed wetlands can be combinedto achieve a higher efficiency of the purification.In this study, the removal effectiveness of the organic substances from municipalwastewater was monitored, using a horizontal pilot - scale constructed wetlandutilizing Typha latifolia and Phragmites australis. In addition to the measurement oforganic substances content through COD, BOD and KMnO4 consumption, and totaldissolved substances (TDS) in influent and effluent, microbiological sample analysis wasperformed, monitored by total number of coliform bacteria.The aim of this study was to calculate the effectiveness of removing organicsubstances from municipal wastewater, depending on the season, as well as theeffectiveness of eliminating total coliform bacteria.The results of one-year research have shown that the removal effectiveness ofthe organic substances from municipal wastewater, expressed as the chemical oxygendemand (COD), was the highest in summer - 87.82% ± 2.83%, and the lowest in thewinter - 64.51% ± 5.89%. During the study, effectiveness of elimination of total coliformbacteria was 97.88 ± 0.80% and total dissolved substances 71.27% .


2003 ◽  
Vol 3 (4) ◽  
pp. 145-152 ◽  
Author(s):  
H. Heinonen-Tanski ◽  
P. Juntunen ◽  
R. Rajala ◽  
E. Haume ◽  
A. Niemelä

Municipal treated wastewater has been tertiary treated in a pilot-scale rapid sand filter. The filtration process was improved by using polyaluminium coagulants. The sand-filtered water was further treated with one or two UV reactors. The quality changes of wastewater were measured with transmittance, total phosphorus, soluble phosphorus, and somatic coliphages, FRNA-coliphages, FC, enterococci and fecal clostridia. Sand filtration alone without coagulants improved slightly some physico-chemical parameters and it had almost no effect on content of microorganisms. If coagulants were used, the filtration was more effective. The reductions were 88-98% for microbial groups and 80% for total phosphorus. The wastewater would meet the requirements for bathing waters (2,000 FC/100 ml, EU, 1976). UV further improved the hygiene level; this type of treated wastewater could be used for unrestricted irrigation (2.2 TC/100 ml, US.EPA 1992). The improvement was better if coagulants were used. The price for tertiary treatment (filtration + UV) would have been 0.036 Euro/m3 according to prices in 2001 in 22 Mm3/a. The investment cost needed for the filtration unit was 0.020 Euro/m3 (6%/15a). Filtration with coagulants is recommended in spite of its costs, since the low transmittance of unfiltered wastewater impairs the efficiency of the UV treatment.


2019 ◽  
Vol 79 (2) ◽  
pp. 314-322 ◽  
Author(s):  
F. Licciardello ◽  
R. Aiello ◽  
V. Alagna ◽  
M. Iovino ◽  
D. Ventura ◽  
...  

Abstract This study aims at defining a methodology to evaluate Ks reductions of gravel material constituting constructed wetland (CW) bed matrices. Several schemes and equations for the Lefranc's test were compared by using different gravel sizes and at multiple spatial scales. The falling-head test method was implemented by using two steel permeameters: one impervious (IMP) and one pervious (P) on one side. At laboratory scale, mean K values for a small size gravel (8–15 × 10−2 m) measured by the IMP and the P permeameters were equal to 19,466 m/d and 30,662 m/d, respectively. Mean Ks values for a big size gravel (10–25 × 10−2 m) measured by the IMP and the P permeameters were equal to 12,135 m/d and 20,866 m/d, respectively. Comparison of Ks values obtained by the two permeameters at laboratory scale as well as a sensitivity analysis and a calibration, lead to the modification of the standpipe equation, to evaluate also the temporal variation of the horizontal Ks. In particular, both permeameters allow the evaluation of the Ks decreasing after 4 years-operation and 1–1.5 years' operation of the plants at full scale (filled with the small size gravel) and at pilot scale (filled with the big size gravel), respectively.


Author(s):  
Manoj Kumar ◽  
Rajesh Singh

In the present study area-based, pollutant removal kinetic analysis was considered using the Zero-order, first-order decay and efficiency loss (EL) models in the constructed wetlands (CWs) for municipal wastewater treatment....


Sign in / Sign up

Export Citation Format

Share Document