Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data

2017 ◽  
Vol 73 ◽  
pp. 105-117 ◽  
Author(s):  
Bolin Fu ◽  
Yeqiao Wang ◽  
Anthony Campbell ◽  
Ying Li ◽  
Bai Zhang ◽  
...  
2020 ◽  
Vol 12 (8) ◽  
pp. 1270
Author(s):  
Peiqing Lou ◽  
Bolin Fu ◽  
Hongchang He ◽  
Ying Li ◽  
Tingyuan Tang ◽  
...  

Discriminating marsh vegetation is critical for the rapid assessment and management of wetlands. The study area, Honghe National Nature Reserve (HNNR), a typical freshwater wetland, is located in Northeast China. This study optimized the parameters (mtry and ntrees) of an object-based random forest (RF) algorithm to improve the applicability of marsh vegetation classification. Multidimensional datasets were used as the input variables for model training, then variable selection was performed on the variables to eliminate redundancy, which improved classification efficiency and overall accuracy. Finally, the performance of a new generation of Chinese high-spatial-resolution Gaofen-1 (GF-1) and Ziyuan-3 (ZY-3) satellite images for marsh vegetation classification was evaluated using the improved object-based RF algorithm with accuracy assessment. The specific conclusions of this study are as follows: (1) Optimized object-based RF classifications consistently produced more than 70.26% overall accuracy for all scenarios of GF-1 and ZY-3 at the 95% confidence interval. The performance of ZY-3 imagery applied to marsh vegetation mapping is lower than that of GF-1 imagery due to the coarse spatial resolution. (2) Parameter optimization of the object-based RF algorithm effectively improved the stability and classification accuracy of the algorithm. After parameter adjustment, scenario 3 for GF-1 data had the highest classification accuracy of 84% (ZY-3 is 74.72%) at the 95% confidence interval. (3) The introduction of multidimensional datasets improved the overall accuracy of marsh vegetation mapping, but with many redundant variables. Using three variable selection algorithms to remove redundant variables from the multidimensional datasets effectively improved the classification efficiency and overall accuracy. The recursive feature elimination (RFE)-based variable selection algorithm had the best performance. (4) Optical spectral bands, spectral indices, mean value of green and NIR bands in textural information, DEM, TWI, compactness, max difference, and shape index are valuable variables for marsh vegetation mapping. (5) GF-1 and ZY-3 images had higher classification accuracy for forest, cropland, shrubs, and open water.


2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Jianjun Lyu ◽  
Ying Hu ◽  
Shuliang Ren ◽  
Yao Yao ◽  
Dan Ding ◽  
...  

Due to a lack of data and practical models, few studies have extracted tailings pond margins in large areas. In addition, there is no public dataset of tailings ponds available for relevant research. This study proposed a new deep learning-based framework for extracting tailings pond margins from high spatial resolution (HSR) remote sensing images by combining You Only Look Once (YOLO) v4 and the random forest algorithm. At the same time, we created an open source tailings pond dataset based on HSR remote sensing images. Taking Tongling city as the study area, the proposed model can detect tailings pond locations with high accuracy and efficiency from a large HSR remote sensing image (precision = 99.6%, recall = 89.9%, mean average precision = 89.7%). An optimal random forest model and morphological processing were utilized to further extract accurate tailings pond margins from the target areas. The final map of the entire study area was obtained with high accuracy. Compared with the random forest algorithm, the total extraction time was reduced by nearly 99%. This study can be beneficial to mine monitoring and ecological environmental governance.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2021 ◽  
Vol 13 (11) ◽  
pp. 2211
Author(s):  
Shuo Xu ◽  
Jie Cheng ◽  
Quan Zhang

Land surface temperature (LST) is an important parameter for mirroring the water–heat exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively low. In this study, we developed a TIR and PWM LST fusion method on based the random forest (RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition, and solar radiation, these variables were selected as candidate auxiliary variables to establish the best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01° can be obtained.


2020 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Ya’nan Zhou ◽  
Changpeng Wang ◽  
Jiangbo Xi ◽  
...  

Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps.


2020 ◽  
Vol 12 (18) ◽  
pp. 3092 ◽  
Author(s):  
Mathieu Varin ◽  
Bilel Chalghaf ◽  
Gilles Joanisse

Species identification in Quebec, Canada, is usually performed with photo-interpretation at the stand level, and often results in a lack of precision which affects forest management. Very high spatial resolution imagery, such as WorldView-3 and Light Detection and Ranging have the potential to overcome this issue. The main objective of this study is to map 11 tree species at the tree level using an object-based approach. For modeling, 240 variables were derived from WorldView-3 with pixel-based and arithmetic feature calculation techniques. A global approach (11 species) was compared to a hierarchical approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were compared: support vector machine, classification and regression tree, random forest (RF), k-nearest neighbors, and linear discriminant analysis. Each model was assessed using 16-band or first 8-band derived variables, with the results indicating higher precision for the RF technique. Higher accuracies were found using 16-band instead of 8-band derived variables for the global approach (overall accuracy (OA): 75% vs. 71%, Kappa index of agreement (KIA): 0.72 vs. 0.67) and tree type level (OA: 99% vs. 97%, KIA: 0.97 vs. 0.95). For broadleaf individual species, higher accuracy was found using first 8-band derived variables (OA: 70% vs. 68%, KIA: 0.63 vs. 0.60). No distinction was found for individual conifer species (OA: 94%, KIA: 0.93). This paper demonstrates that a hierarchical classification approach gives better results for conifer species and that using an 8-band WorldView-3 instead of a 16-band is sufficient.


Sign in / Sign up

Export Citation Format

Share Document