scholarly journals Detection and attribution of positive net ecosystem productivity extremes in China's terrestrial ecosystems during 2000-2016

2021 ◽  
Vol 132 ◽  
pp. 108323
Author(s):  
Miaomiao Wang ◽  
Jian Zhao ◽  
Shaoqiang Wang ◽  
Bin Chen ◽  
Zhipeng Li
2016 ◽  
Author(s):  
Eva van Gorsel ◽  
Sebastian Wolf ◽  
Peter Isaac ◽  
James Cleverly ◽  
Vanessa Haverd ◽  
...  

Abstract. As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. We synthesized eddy-covariance measurements from seven woodland and forest sites across climate zones in southern Australia, which we combined with model simulations from the CABLE land surface model to investigate the effect of this summer heat wave on the carbon and water exchange of terrestrial ecosystems. We found that the water-limited woodlands and the energy-limited forest ecosystem responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux, an increased Bowen ratio and a reduced carbon uptake while the forest ecosystem had increased latent heat flux, reduced Bowen ratio and increased carbon uptake. Ecosystem respiration was increased at all sites resulting in reduced net ecosystem productivity in the woodlands and constant net ecosystem productivity in the forest. Importantly all ecosystems remained carbon sinks during the event. Precipitation after the most intense first part of the heat wave and slightly cooler temperatures led to a decrease of the Bowen ratio and hence increased evaporative cooling. Carbon uptake in the woodlands also recovered quickly but respiration remained high. While woodlands and forest proved relatively resistant to this short-term heat extreme these carbon sinks may not sustainable in a future with an increased number, intensity and duration of heat waves.


2021 ◽  
Vol 13 (21) ◽  
pp. 4449
Author(s):  
Jingjing Zhang ◽  
Xingming Hao ◽  
Haichao Hao ◽  
Xue Fan ◽  
Yuanhang Li

Numerous studies have confirmed that climate change leads to a decrease in the net ecosystem productivity (NEP) of terrestrial ecosystems and alters regional carbon source/sink patterns. However, the response mechanism of NEP to climate change in the arid regions of Central Asia remains unclear. Therefore, this study combined the Carnegie–Ames–Stanford approach (CASA) and empirical models to estimate the NEP in Central Asia and quantitatively evaluate the sensitivity of the NEP to climate factors. The results show that although the net primary productivity (NPP) in Central Asia exhibits an increasing trend, it is not significant. Soil heterotrophic respiration (RH) has increased significantly, while the NEP has decreased at a rate of 6.1 g C·m−2·10 a−1. Spatially, the regional distribution of the significant increase in RH is consistent with that of the significant decrease in the NEP, which is concentrated in western and southern Central Asia. Specifically, the NPP is more sensitive to precipitation than temperature, whereas RH and NEP are more sensitive to temperature than precipitation. The annual contribution rates of temperature and precipitation to the NEP are 28.79% and 23.23%, respectively. Additionally, drought has an important impact on the carbon source/sink in Central Asia. Drought intensified from 2001 to 2008, leading to a significant expansion of the carbon source area in Central Asia. Therefore, since the start of the 21st century, climate change has damaged the NEP of the Central Asian ecosystem. Varying degrees of warming under different climate scenarios will further aggravate the expansion of carbon source areas in Central Asia. An improved understanding of climate change impacts in Central Asia is critically required for sustainable development of the regional economy and protection of its natural environment. Our results provide a scientific reference for the construction of the Silk Road Economic Belt and global emissions reduction.


2019 ◽  
Vol 14 (1) ◽  
pp. 014003 ◽  
Author(s):  
Li Zhang ◽  
Xiaoli Ren ◽  
Junbang Wang ◽  
Honglin He ◽  
Shaoqiang Wang ◽  
...  

2015 ◽  
Vol 29 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Alina Danielewska ◽  
Marek Urbaniak ◽  
Janusz Olejnik

Abstract The Scots pine is one of the most important species in European and Asian forests. Due to a widespread occurrence of pine forests, their significance in the energy and mass exchange between the Earth surface and the atmosphere is also important, particularly in the context of climate change and greenhouse gases balance. The aim of this work is to present the relationship between the average annual net ecosystem productivity and growing season length, latitude and air temperature (tay) over Europe. Therefore, CO2 flux measurement data from eight European pine dominated forests were used. The observations suggest that there is a correlation between the intensity of CO2 uptake or emission by a forest stand and the above mentioned parameters. Based on the obtained results, all of the selected pine forest stands were CO2 sinks, except a site in northern Finland. The carbon dioxide uptake increased proportionally with the increase of growing season length (9.212 g C m-2 y-1 per day of growing season, R2 = 0.53, p = 0.0399). This dependency showed stronger correlation and higher statistical significance than both relationships between annual net ecosystem productivity and air temperature (R2 = 0.39, p = 0.096) and annual net ecosystem productivity and latitude (R2 = 0.47, p = 0.058). The CO2 emission surpassed assimilation in winter, early spring and late autumn. Moreover, the appearance of late, cold spring and early winter, reduced annual net ecosystem productivity. Therefore, the growing season length can be considered as one of the main factor affecting the annual carbon budget of pine forests.


2016 ◽  
Author(s):  
Huan Gu ◽  
Christopher A. Williams ◽  
Bardan Ghimire ◽  
Feng Zhao ◽  
Chengquan Huang

Abstract. Assessment of forest carbon storage and uptake is central to understanding the role forests play in the global carbon cycle and policy-making aimed at mitigating climate change. Current U.S. carbon stocks and fluxes are monitored and reported at fine-scale regionally, or coarse-scale nationally. We proposed a new methodology of quantifying carbon uptake and release across forested landscapes in the Pacific Northwest (PNW) at a fine scale (30 m) by combining remote-sensing based disturbance year, disturbance type, and aboveground biomass with forest inventory data in a carbon modelling framework. Time since disturbance is a key intermediate determinant that aided the assessment of disturbance-driven carbon emissions and removals legacies. When a recent disturbance was detected, time since disturbance can be directly determined by remote sensing-derived disturbance products; and if not, time since last stand-clearing was inferred from remote sensing-derived 30 m biomass map and field inventory-derived species-specific biomass regrowth curves. Net ecosystem productivity (NEP) was further mapped based on carbon stock and flux trajectories that described how NEP changes with time following harvest, fire, or bark beetle disturbances of varying severity. Uncertainties from biomass map and forest inventory data were propagated by probabilistic sampling to provide a probabilistic, statistical distribution of stand age and NEP for each forest pixel. We mapped mean, standard deviation and statistical distribution of stand age and NEP at 30 m in the PNW region. Our map indicated a net ecosystem productivity of 5.2 Tg C y−1 for forestlands circa 2010 in the study area, with net uptake in relatively mature (> 24 year old) forests (13.6 Tg C y−1) overwhelming net negative NEP from tracts that have seen recent harvest (−6.4 Tg C y−1), fires (−0.5 Tg C y−1), and bark beetle outbreaks (−1.4 Tg C y−1). The approach will be applied to forestlands in other regions of the conterminous U.S. to advance a more comprehensive monitoring, mapping and reporting the carbon consequences of forest change across the U.S.


Sign in / Sign up

Export Citation Format

Share Document