scholarly journals Evaluation of modeled global vegetation carbon dynamics: Analysis based on global carbon flux and above-ground biomass data

2017 ◽  
Vol 355 ◽  
pp. 84-96 ◽  
Author(s):  
Bao-Lin Xue ◽  
Qinghua Guo ◽  
Tianyu Hu ◽  
Guoqiang Wang ◽  
Yongcai Wang ◽  
...  
2016 ◽  
Author(s):  
Bao-Lin Xue ◽  
Qinghua Guo ◽  
Tianyu Hu ◽  
Yongcai Wang ◽  
Shengli Tao ◽  
...  

Abstract. Dynamic global vegetation models are useful tools for the simulation of carbon dynamics on regional and global scales. However, even the most validated models are usually hampered by the poor availability of global biomass data in the model validation, especially on regional/global scales. Here, taking the integrated biosphere simulator model (IBIS) as an example, we evaluated the modeled carbon dynamics, including gross primary production (GPP) and potential above-ground biomass (AGB), on the global scale. The IBIS model was constrained by both in situ GPP and plot-level AGB data collected from the literature. Independent validation showed that IBIS could reproduce GPP and evapotranspiration with acceptable accuracy at site and global levels. On the global scale, the IBIS-simulated total AGB was similar to those obtained in other studies. However, discrepancies were observed between the model-derived and observed spatial patterns of AGB for Amazonian forests. The differences among the AGB spatial patterns were mainly caused by the single-parameter set of the model used. This study showed that different meteorological inputs can also introduce substantial differences in AGB on the global scale. Further analysis showed that this difference is small compared with parameter-induced differences. The conclusions of our research highlight the necessity of considering the heterogeneity of key model physiological parameters in modeling global AGB. The research also shows that to simulate large-scale carbon dynamics, both carbon flux and AGB data are necessary to constrain the model. The main conclusions of our research will help to improve model simulations of global carbon cycles.


2018 ◽  
Author(s):  
Anna B. Harper ◽  
Andrew J. Wiltshire ◽  
Peter M. Cox ◽  
Pierre Friedlingstein ◽  
Chris D. Jones ◽  
...  

Abstract. Dynamic global vegetation models (DGVMs) are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth System Model. Recently the number of plant functional types (PFTs) in JULES were expanded from 5 to 9 to better represent functional diversity in global ecosystems. Here we introduce a more mechanistic representation of vegetation dynamics in TRIFFID, the dynamic vegetation component of JULES, that allows for any number of PFTs to compete based solely on their height, removing the previous hardwired dominance hierarchy where dominant types are assumed to outcompete subdominant types. With the new set of 9 PFTs, JULES is able to more accurately reproduce global vegetation distribution compared to the former 5 PFT version. Improvements include the coverage of trees within tropical and boreal forests, and a reduction in shrubs, which dominated at high latitudes. We show that JULES is able to realistically represent several aspects of the global carbon cycle. The simulated gross primary productivity (GPP) is within the range of observations, but simulated net primary productivity (NPP) is slightly too high. GPP in JULES from 1982–2011 was 133 PgC yr−1, compared to observation-based estimates between 123±8 (over the same time period) and 150–175 PgC yr−1. NPP from 2000–2013 was 72 PgC yr−1, compared to satellite-derived NPP of 55 PgC yr−1 over the same period and independent estimates of 56.2±14.3 PgC yr−1. The simulated carbon stored in vegetation is 542 PgC, compared to an observation-based range of 400–600 PgC. Soil carbon is much lower (1422 PgC) than estimates from measurements (>2400 PgC), with large underestimations of soil carbon in the tropical and boreal forests. We also examined some aspects of the historical terrestrial carbon sink as simulated by JULES. Between the 1900s and 2000s, increased atmospheric carbon dioxide levels enhanced vegetation productivity and litter inputs into the soils, while land-use change removed vegetation and reduced soil carbon. The result was a simulated increase in soil carbon of 57 PgC but a decrease in vegetation carbon by of PgC. JULES simulated a loss of soil and vegetation carbon of 14 and 124 PgC, respectively, due to land-use change from 1900–2009. The simulated land carbon sink was 2.0±1.0 PgC yr−1 from 2000–2009, in close agreement to estimates from the IPCC and Global Carbon Project.


2018 ◽  
Vol 11 (7) ◽  
pp. 2857-2873 ◽  
Author(s):  
Anna B. Harper ◽  
Andrew J. Wiltshire ◽  
Peter M. Cox ◽  
Pierre Friedlingstein ◽  
Chris D. Jones ◽  
...  

Abstract. Dynamic global vegetation models (DGVMs) are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES (the Joint UK Land Environment Simulator) represents the land surface in the Hadley Centre climate models and in the UK Earth System Model. Recently the number of plant functional types (PFTs) in JULES was expanded from five to nine to better represent functional diversity in global ecosystems. Here we introduce a more mechanistic representation of vegetation dynamics in TRIFFID, the dynamic vegetation component of JULES, which allows for any number of PFTs to compete based solely on their height; therefore, the previous hardwired dominance hierarchy is removed. With the new set of nine PFTs, JULES is able to more accurately reproduce global vegetation distribution compared to the former five PFT version. Improvements include the coverage of trees within tropical and boreal forests and a reduction in shrubs, the latter of which dominated at high latitudes. We show that JULES is able to realistically represent several aspects of the global carbon (C) cycle. The simulated gross primary productivity (GPP) is within the range of observations, but simulated net primary productivity (NPP) is slightly too high. GPP in JULES from 1982 to 2011 is 133 Pg C yr−1, compared to observation-based estimates (over the same time period) between 123 ± 8 and 150–175 Pg C yr−1. NPP from 2000 to 2013 is 72 Pg C yr−1, compared to satellite-derived NPP of 55 Pg C yr−1 over the same period and independent estimates of 56.2 ± 14.3 Pg C yr−1. The simulated carbon stored in vegetation is 542 Pg C, compared to an observation-based range of 400–600 Pg C. Soil carbon is much lower (1422 Pg C) than estimates from measurements (> 2400 Pg C), with large underestimations of soil carbon in the tropical and boreal forests. We also examined some aspects of the historical terrestrial carbon sink as simulated by JULES. Between the 1900s and 2000s, increased atmospheric carbon dioxide levels enhanced vegetation productivity and litter inputs into the soils, while land use change removed vegetation and reduced soil carbon. The result is a simulated increase in soil carbon of 57 Pg C but a decrease in vegetation carbon of 98 Pg C. The total simulated loss of soil and vegetation carbon due to land use change is 138 Pg C from 1900 to 2009, compared to a recent observationally constrained estimate of 155 ± 50 Pg C from 1901 to 2012. The simulated land carbon sink is 2.0 ± 1.0 Pg C yr−1 from 2000 to 2009, in close agreement with estimates from the IPCC and Global Carbon Project.


2016 ◽  
Vol 22 (12) ◽  
pp. 3996-4013 ◽  
Author(s):  
Michelle O. Johnson ◽  
David Galbraith ◽  
Manuel Gloor ◽  
Hannes De Deurwaerder ◽  
Matthieu Guimberteau ◽  
...  

Author(s):  
W. Li ◽  
J. Wu ◽  
L. Liu ◽  
Y. Li ◽  
E. Chen

Abstract. Tropical forests play a key role in the carbon cycle and sustainable development and their above ground biomass (AGB) is applied as an quantitative parameter for the research on global carbon cycle and ecological function. Ten-baseline Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) images collected in Mondah, Gabon 4th Feb. 2016 during AfriSAR campaign are applied to extract the vertical scattering coefficient with SAR tomography (TomoSAR). Capon is used to reconstruct the vertical reflectivity profile and then the correlation analysis between backscattering coefficients at special height and the in-situ F-AGB is carried out. The results show that Capon performs well when the perpendicular baseline interval is similar and the vertical reflectivity relates closely with the F-AGB in plot scale.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
AFSHAN ANJUM BABA ◽  
SYED NASEEM UL-ZAFAR GEELANI ◽  
ISHRAT SALEEM ◽  
MOHIT HUSAIN ◽  
PERVEZ AHMAD KHAN ◽  
...  

The plant biomass for protected areas was maximum in summer (1221.56 g/m2) and minimum in winter (290.62 g/m2) as against grazed areas having maximum value 590.81 g/m2 in autumn and minimum 183.75 g/m2 in winter. Study revealed that at Protected site (Kanidajan) the above ground biomass ranged was from a minimum (1.11 t ha-1) in the spring season to a maximum (4.58 t ha-1) in the summer season while at Grazed site (Yousmarag), the aboveground biomass varied from a minimum (0.54 t ha-1) in the spring season to a maximum of 1.48 t ha-1 in summer seasonandat Seed sown site (Badipora), the lowest value of aboveground biomass obtained was 4.46 t ha-1 in spring while as the highest (7.98 t ha-1) was obtained in summer.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2021 ◽  
Vol 21 ◽  
pp. 100462
Author(s):  
Sadhana Yadav ◽  
Hitendra Padalia ◽  
Sanjiv K. Sinha ◽  
Ritika Srinet ◽  
Prakash Chauhan

Sign in / Sign up

Export Citation Format

Share Document