Operationalising resilience: A methodological framework for assessing urban resilience through System Dynamics Model

2022 ◽  
Vol 465 ◽  
pp. 109851
Author(s):  
Giulia Datola ◽  
Marta Bottero ◽  
Elena De Angelis ◽  
Francesco Romagnoli
Land ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 242 ◽  
Author(s):  
Marta Bottero ◽  
Giulia Datola ◽  
Elena De Angelis

During the last decade, the concept of urban resilience has been increasingly implemented in urban planning, with the main aim to design urban development strategies. Urban resilience is a multi-dimensional and dynamic concept. When applied to urban planning, it consists of studying cities as complex socio-economic systems. Municipalities are currently working to undertake appropriate actions to enrich the resilience of cities. Moreover, several difficulties concern the evaluation of the impacts over time of the strategies designed to enhance urban resilience. The present paper proposes an integrated approach based on the System Dynamics Model (SDM) and the Analytic Network Process (ANP). The objective of this research is to describe the method and to illustrate its application to the area called Basse di Stura, located in the city of Turin, Italy. The method is applied to evaluate the possible impacts of two different urban scenarios in terms of the change of urban resilience performance over time. The final result is represented by an index that describes urban resilience performance.


2010 ◽  
Vol 20 (2) ◽  
pp. 59-62
Author(s):  
Patrick Einzinger ◽  
Günther Zauner ◽  
G. Ganjeizadeh-Rouhani

Systems ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 56
Author(s):  
Urmila Basu Mallick ◽  
Marja H. Bakermans ◽  
Khalid Saeed

Using Indian free-ranging dogs (FRD) as a case study, we propose a novel intervention of social integration alongside previously proposed methods for dealing with FRD populations. Our study subsumes population dynamics, funding avenues, and innovative strategies to maintain FRD welfare and provide societal benefits. We develop a comprehensive system dynamics model, featuring identifiable parameters customizable for any management context and imperative for successfully planning a widescale FRD population intervention. We examine policy resistance and simulate conventional interventions alongside the proposed social integration effort to compare monetary and social rewards, as well as costs and unintended consequences. For challenging socioeconomic ecological contexts, policy resistance is best overcome by shifting priority strategically between social integration and conventional techniques. The results suggest that social integration can financially support a long-term FRD intervention, while transforming a “pest” population into a resource for animal-assisted health interventions, law enforcement, and conservation efforts.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Robert Dare

This article presents a customized system dynamics model to facilitate the informed development of policy for urban heat island mitigation within the context of future climate change, and with special emphasis on the reduction of heat-related mortality. The model incorporates a variety of components (incl.: the urban heat island effect; population dynamics; climate change impacts on temperature; and heat-related mortality) and is intended to provide urban planning and related professionals with: a facilitated means of understanding the risk of heat-related mortality within the urban heat island; and location-specific information to support the development of reasoned and targeted urban heat island mitigation policy.


Sign in / Sign up

Export Citation Format

Share Document