scholarly journals Methane, carbon dioxide and nitrous oxide fluxes from a temperate salt marsh: Grazing management does not alter Global Warming Potential

2012 ◽  
Vol 113 ◽  
pp. 182-191 ◽  
Author(s):  
Hilary Ford ◽  
Angus Garbutt ◽  
Laurence Jones ◽  
Davey L. Jones
2021 ◽  
Author(s):  
Franz Weiss ◽  
Adrian Leip ◽  
Vera Eory

Abstract The global warming potential GWPgas(H) relates radiative forcing of a single pulse emission of a greenhouse gas, the absolute global warming potential AGWPgas(H), to the respective radiative forcing of carbon dioxide over a defined time horizon H. Mitigation measures targeting short-lived climate forcers (SLCFs) or reversible measures need to be applied permanently to be effective in the long run, but cost effectiveness for a permanent application of a measure differs from a single application. We propose a concept for an absolute global warming potential of permanent yearly pulses AGWP’gas(H), and several options for alternative indices to replace or complement the GWP: For the GWPgas(H/H) and the GWPcgas(H/H) we keep the AGWPCO2(H) in the denominator, which allows the direct comparison with conventional estimates, while for the GWP’gas(H) we define a new metric replacing the denominator by the AGWP’CO2(H). Different cost-effectiveness indicators can be defined respectively. We demonstrate the concept on the example of typical greenhouse gases emitted or removed by the agricultural sector: methane, nitrous oxide and carbon dioxide, fossil and stored as soil carbon. We show that, compared to GWP-based cost-effectiveness analysis, measures targeting soil carbon are discouraged relative to measures targeting methane, nitrous oxide and fossil carbon dioxide.


Chemosphere ◽  
2003 ◽  
Vol 52 (3) ◽  
pp. 609-621 ◽  
Author(s):  
Jari T. Huttunen ◽  
Jukka Alm ◽  
Anu Liikanen ◽  
Sari Juutinen ◽  
Tuula Larmola ◽  
...  

2013 ◽  
Vol 177 ◽  
pp. 10-20 ◽  
Author(s):  
Cameron M. Pittelkow ◽  
Maria A. Adviento-Borbe ◽  
James E. Hill ◽  
Johan Six ◽  
Chris van Kessel ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (45) ◽  
pp. 39492-39499 ◽  
Author(s):  
Debjyoti Ray ◽  
Ch. Subrahmanyam

Carbon dioxide (CO2) decomposition has drawn significant interest over the years due to its global warming potential.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Kalyan Annamalai ◽  
Siva Sankar Thanapal ◽  
Devesh Ranjan

Carbon dioxide (CO2) is one of the greenhouse gases which cause global warming. The amount of fossil fuels consumed to meet the demands in the areas of power and transportation is projected to increase in the upcoming years. Depending on carbon content, each power plant fuel has its own potential to produce carbon dioxide. Similarly, the humans consume food containing carbohydrates (CH), fat, and protein which emit CO2 due to metabolism. The biology literature uses respiratory quotient (RQ), defined as the ratio of CO2 moles exhausted per mole of O2 consumed within the body, to estimate CO2 loading in the blood stream and CO2 in nasal exhaust. Here, we apply that principle in the field of combustion to relate the RQ to CO2 emitted in tons per GJ of energy released when a fuel is combusted. The RQ value of a fuel can be determined either from fuel chemical formulae (from ultimate analyses for most liquid and solid fuels of known composition) or from exhaust gas analyses. RQ ranges from 0.5 for methane (CH4) to 1 for pure carbon. Based on the results obtained, the lesser the value of “RQ” of a fuel, the lower its global warming potential. This methodology can be further extended for an “online instantaneous measurement of CO2” in automobiles based on actual fuel use irrespective of fuel composition.


2020 ◽  
Author(s):  
Fallon Fowler ◽  
Christopher J. Gillespie ◽  
Steve Denning ◽  
Shuijin Hu ◽  
Wes Watson

AbstractBy mixing and potentially aerating dung, dung beetles may affect the microbes producing the greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Here, their sum-total global warming effect is described as the carbon dioxide equivalent (CO2e). Our literature analysis of reported GHG emissions and statistics suggests that most dung beetles do not, however, reduce CO2e even if they do affect individual GHGs. Here, we compare the GHG signature of homogenized (“premixed”) and unhomogenized (“unmixed”) dung with and without dung beetles to test whether mixing and burial influence GHGs. Mixing by hand or by dung beetles did not reduce any GHG – in fact, tunneling dung beetles increased N2O medians by ≥1.8x compared with dung-only. This suggests that either: 1) dung beetles do not meaningfully mitigate GHGs as a whole; 2) dung beetle burial activity affects GHGs more than mixing alone; or 3) greater dung beetle abundance and activity is required to produce an effect.


Sign in / Sign up

Export Citation Format

Share Document