Long-term salt marsh vertical accretion in a tidal bay with reduced sediment supply

2014 ◽  
Vol 146 ◽  
pp. 14-23 ◽  
Author(s):  
Zhigang Ma ◽  
Tom Ysebaert ◽  
Daphne van der Wal ◽  
Dick J. de Jong ◽  
Xiuzhen Li ◽  
...  
2019 ◽  
Vol 46 (20) ◽  
pp. 11178-11187 ◽  
Author(s):  
Cai J.T. Ladd ◽  
Mollie F. Duggan‐Edwards ◽  
Tjeerd J. Bouma ◽  
Jordi F. Pagès ◽  
Martin W. Skov

2021 ◽  
Vol 9 (7) ◽  
pp. 751
Author(s):  
Jenny R. Allen ◽  
Jeffrey C. Cornwell ◽  
Andrew H. Baldwin

Persistence of tidal wetlands under conditions of sea level rise depends on vertical accretion of organic and inorganic matter, which vary in their relative abundance across estuarine gradients. We examined the relative contribution of organic and inorganic matter to vertical soil accretion using lead-210 (210Pb) dating of soil cores collected in tidal wetlands spanning a tidal freshwater to brackish gradient across a Chesapeake Bay subestuary. Only 8 out of the 15 subsites had accretion rates higher than relative sea level rise for the area, with the lowest rates of accretion found in oligohaline marshes in the middle of the subestuary. The mass accumulation of organic and inorganic matter was similar and related (R2 = 0.37). However, owing to its lower density, organic matter contributed 1.5–3 times more toward vertical accretion than inorganic matter. Furthermore, water/porespace associated with organic matter accounted for 82%–94% of the total vertical accretion. These findings demonstrate the key role of organic matter in the persistence of coastal wetlands with low mineral sediment supply, particularly mid-estuary oligohaline marshes.


Ecosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Kathryn M. Beheshti ◽  
Kerstin Wasson ◽  
Christine Angelini ◽  
Brian R. Silliman ◽  
Brent B. Hughes

Author(s):  
Xuefeng Peng ◽  
Qixing Ji ◽  
John H. Angell ◽  
Patrick J. Kearns ◽  
Jennifer L. Bowen ◽  
...  

2021 ◽  
Author(s):  
Riccardo Xotta ◽  
Claudia Zoccarato ◽  
Philip S. J. Minderhoud ◽  
Pietro Teatini

<p>Tidal marshes are vulnerable and dynamic ecosystems with essential roles from protection against marine storms to biodiversity preservation. However, the survival of these environments is threatened by external stressors such as increasing mean sea level, reduction in sediment supply, and erosion. Tidal marshes are formed by deposition over the last centuries to millennia of sediments transported by surface water and biodegradation of organic matter derived from halophytic vegetation. Therefore, the sediment at the surface is characterized by high porosity and their large consolidation potential plays an important role in the future elevation dynamics, which is often not fully recognized.</p><p>Here we propose a novel three-dimensional numerical model to simulate the long-term dynamics of tidal marshes. A 3D groundwater flow equation in saturated conditions is implemented to compute the over-pressure dissipation with the aid of the finite element (FE) method, whereas the sediment consolidation is computed according to Terzaghi's theory.</p><p>A Lagrangian approach is implemented in the FE numerical model to properly consider the large soil deformation arising from the deposition of highly compressible material. The hydro-geomechanical properties, that depend on the intergranular effective stress, are highly non-linear.</p><p>The model takes advantage of a dynamic mesh that simulates the evolution of the landform elevation by means of an accretion/compaction mechanism: the elements deform in time as the soil consolidates and increase in number as the new sediments deposit over the marsh surface. The deposition is treated as input to the consolidation model and can vary in space and time.</p><p>The model is applied to simulate the long-term evolution of realistic tidal marshes in terms of accretion and consolidation due to the coupled dynamics of surficial and subsurface processes.</p>


1990 ◽  
Author(s):  
M. F. Gross ◽  
V. Klemas ◽  
M. A. Hardisky
Keyword(s):  

2008 ◽  
Vol 45 (4) ◽  
pp. 1284-1292 ◽  
Author(s):  
Jennifer B. Culbertson ◽  
Ivan Valiela ◽  
Matthew Pickart ◽  
Emily E. Peacock ◽  
Christopher M. Reddy

2016 ◽  
Author(s):  
Guilhem Aubert ◽  
Vincent J. Langlois ◽  
Pascal Allemand

Abstract. Bedload sediment transport is one of the main processes that contribute to bedrock incision in a river and is therefore one of the key control parameters in the evolution of mountainous lanscapes. In recent years, many studies have addressed this issue through experimental setups, direct measurements in the field or various analytical models. In this article, we present a new direct numerical approach: using the classical methods of discrete element simulations applied to granular materials, we compute explicitely the trajectories of a number of pebbles entrained by a turbulent water stream over a rough solid surface. This method allows us to extract quantitatively the amount of energy that successive impacts of pebbles deliver to the bedrock, as a function of both the amount of sediment available and the Shields number. We show that we reproduce qualitatively the behaviour observed experimentally by Sklar and Dietrich (2001) and observe both a "tool-effect" and a "cover- effect". Converting the energy delivered to the bedrock into an average long-term incision rate of the river leads to predictions consistent with observations in the field. Finally, we reformulate the dependency of this incision rate with Shields number and sediment flux, and predict that the cover term should decay linearly at low sediment supply and exponentially at high sediment supply.


Sign in / Sign up

Export Citation Format

Share Document