Significant but short time assimilation of organic matter from decomposed Exotic Spartina alterniflora leaf litter by mangrove polychaetes

Author(s):  
Hui Chen ◽  
Jianxiang Feng ◽  
Yihui Zhang ◽  
Shudong Wei ◽  
Zhongyi Chen ◽  
...  
2020 ◽  
Vol 7 ◽  
Author(s):  
Adrianus Both ◽  
Carrie J. Byron ◽  
Barry Costa-Pierce ◽  
Christopher C. Parrish ◽  
Damian C. Brady

Detritus is a frequent, poorly defined, component of bivalve growth and carrying capacity models. The purpose of this study was to determine the proportional contributions of detrital material derived from primary producers (phytoplankton, macroalgae, Spartina alterniflora, and terrestrial leaf litter) to particulate organic matter (POM) and blue mussel’s (Mytilus edulis) diet within a temperate bay (Saco Bay, ME, United States). We assessed which detrital sources, if any, warranted incorporation into modeling efforts. Stable isotopes (δ13C and δ15N) and fatty acid biomarkers (FA) of mussels, size fractionated (<100 μm) POM, and primary producer endmembers (phytoplankton, Saccharina latissima, Ascophyllum nodosum, Chondrus crispus, Spartina alterniflora and leaf litter) collected between 2016 and 2017 were used to estimate endmember contributions to POM and mussel diets. Based on FAs dinoflagellates were the most abundant phytoplankton in Saco Bay, even during the fall diatom bloom. Diatoms within the bay were primarily centric, but pennate diatoms were at times present in the water column (e.g., in September). Following abundances of dinoflagellates, and centric and pennate diatoms, 22:6ω3 (DHA) was the most abundant essential FA (8.6 ± 0.1% total FAs), followed by 20:5ω3 (EPA: 7.0 ± 0.1%) and 20:4ω6 (ARA: 0.3 ± 0.1%). On average, phytoplankton derived organic matter contributed 22.1 ± 0.3% of the total POM in the bay. The concentration of non-fresh phytoplankton organic matter, or remaining organic matter (REMORG), was positively correlated with all endmember biomarkers. However, the proportion (%) of vascular plant, macroalgal, and detrital FAs was negatively correlated with the concentration of REMORG. This finding suggests in periods of low productivity, vascular plant and macroalgal detritus are proportionally more important contributors to POM. Mussels were broad spectrum omnivores, consuming phytoplankton, zooplankton, and detrital material. Detrital contributions to mussel diets were important (minimum of 16% of diet). Although small, macroalgae’s dietary contribution (8%) to M. edulis may be important. Macroalgal detritus contained essential FAs (20:5ω3 and 20:4ω6) that could supplement mussel diets, as M. edulis in Saco Bay were likely limited by 20:5ω3. Consideration of how macroalgal detritus affects the availability of essential FAs in POM may be useful to incorporate into aquaculture site selection.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7451
Author(s):  
Barbara Breza-Boruta ◽  
Karol Kotwica ◽  
Justyna Bauza-Kaszewska

Properly selected tillage methods and management of the available organic matter resources are considered important measures to enable farming in accordance with the principles of sustainable agriculture. Depending on the depth and intensity of cultivation, tillage practices affect soil chemical composition, structure and biological activity. The three-year experiment was performed on the soil under spring wheat (cv. Tybalt) short-time cultivation. The influence of different tillage systems and stubble management on the soil’s chemical and biological parameters was analyzed. Organic carbon content (OC); content of biologically available phosphorus (Pa), potassium (Ka), and magnesium (Mg); content of total nitrogen (TN), mineral nitrogen forms: N-NO3 and N-NH4 were determined in various soil samples. Moreover, the total number of microorganisms (TNM), bacteria (B), actinobacteria (A), fungi (F); soil respiratory activity (SR); and pH in 1 M KCl (pH) were also investigated. The results show that organic matter amendment is of greater influence on soil characteristics than the tillage system applied. Manure application, as well as leaving the straw in the field, resulted in higher amounts of organic carbon and biologically available potassium. A significant increase in the number of soil microorganisms was also observed in soil samples from the experimental plots including this procedure.


2021 ◽  
Vol 27 (3) ◽  
pp. 355-365
Author(s):  
Juan D. León-Peláez ◽  
◽  
William Caicedo-Ruiz ◽  
Jeiner Castellanos-Barliza ◽  
◽  
...  

Introduction: Standing leaf litter represent an essential source of organic matter and nutrients to dynamize biogeochemical processes at the ecosystem level. Objectives: To characterize the accumulation and decomposition of organic materials and flow of nutrients from standing litter in an urban dry tropical forest in a successional stage, after 10 years of abandonment of agricultural activities, and to determine the potential use of three species in future active restoration activities. Materials and methods: Standing litter samples were collected from a forest fragment in Santa Marta, Colombia, separating leaves, reproductive material, woody material and other residues. Additionally, leaves of three species of interest for ecological restoration (Albizia niopoides Spruce ex Benth., Cordia alba [Jacq.] Roem. & Schult. and Machaerium milleflorum Dugand G. A.) were separated and Ca, Mg, K, N and P concentrations were determined. Results and discussion: Total standing litter was 8.3 Mg∙ha-1 with a mean residence time of two years. The leaves represented 20% of the standing litter, with a mean residence time of 1.4 years. Based on the decomposition constant (kj = 0.73) and the rate of leaf litterfall, organic matter returns accounted for 3.4 Mg∙ha-1∙year-1. Leaf decomposition rate decreased in the following order C. alba > M. milleflorum > A. niopoides. P represented the greatest limitation with low release rates (0.1 to 1.2 kg∙ha-1∙year-1). Conclusions: The passive restoration strategy allowed reactivation of biogeochemical cycle via fine leaf litter. Cordia alba showed potential for inclusion in restoration activities, with lower values for leaf N/P ratio, and higher rates for leaf litterfall, litter decomposition and nutrient release.


2018 ◽  
Vol 66 (2) ◽  
pp. 571 ◽  
Author(s):  
Jeiner Castellanos-Barliza ◽  
Juan Diego León-Peláez ◽  
Rosalba Armenta-Martínez ◽  
Willinton Barranco-Pérez ◽  
William Caicedo-Ruíz

The litterfall and decomposition represent the main transfer of organic matter and nutrients from the vegetation to the soil surface and determine positive trajectories in the process of rehabilitating and restoring degraded ecosystems. The aim of this study was to evaluate the contributions of organic materials and nutrients through the characterization of fine litter in an urban dry forest fragment. Litter production was monitored for one year by collecting 29 traps (0.5 m2). To evaluate leaf nutrient resorption, green leaves were collected from 5-10 individuals that represented the dominant tree species. Litter-bags (20 x 20 cm, 2 mm pore) were used for six months to evaluate the decomposition of leaf litter. Annual fine litter production was found to be 8 574 kg ha-1, with the Cordia alba species contributing the most leaf litter (1 134 kg ha-1) and nutrients (N: 6.16; P: 0.21; Ca: 4.72; Mg: 0.47; K: 1.27 kg ha-1). Decomposition rates (k constant) followed the decreasing order: C. alba (k: 4.6) > Machaerium milleflorum (k: 3.5). M. milleflorum and Albizia niopoides presented a pattern of rapid N and P release in the first 30 days, with more than 80 % and 60 % released from M. milleflorum and C. alba, respectively, by the end of the experiment. The litterfall monitoring carried out in this urban dry forest fragment revealed some important aspects of the functioning of an ecosystem as seriously threatened as the tropical dry forest. Rev. Biol. Trop. 66(2): 571-585. Epub 2018 June 01. 


2007 ◽  
Vol 39 (5) ◽  
pp. 1202-1205 ◽  
Author(s):  
Andrew J. Rawlins ◽  
Ian D. Bull ◽  
Philip Ineson ◽  
Richard P. Evershed

Dermatology ◽  
2006 ◽  
Vol 212 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Akiko Yoneyama ◽  
Masaki Shimizu ◽  
Makiko Tabata ◽  
Junko Yashiro ◽  
Toshihiko Takata ◽  
...  

CERNE ◽  
2013 ◽  
Vol 19 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Vinícius Augusto Morais ◽  
José Roberto Soares Scolforo ◽  
Carlos Alberto Silva ◽  
José Marcio de Mello ◽  
Lucas Rezende Gomide ◽  
...  

This study aimed at quantifying carbon (C) and biomass stocks in shoot portion, leaf litter, roots and soil within a fragment of dense savanna 'cerradão', 158.5 ha in area, located in Minas Gerais state. Measures were quantified using dendrometric parameters obtained during the forest inventory and collection of leaf litter, root and soil samples. Furrows were dug in the soil each 100 cm long, 50 cm wide and 100 cm deep in order to collect root samples at depths of 0-30 cm, 30-50 cm and 50-100 cm, and soil samples from the layers 0-10 cm, 10-20 cm, 20-40 cm, 40-60 cm and 60-100 cm, as well as any leaf litter from the surrounding surface. Analyses were performed in the Organic Matter Study Laboratory (DCS/UFLA) to determine C contents in the above matrices, using an Elementar analyzer model Vario TOC Cube. Higher C contents and stocks and lower density were noted in topmost soil layers. In cerradão, shoot portion was found to be the matrix contributing the most to biomass production, followed by roots and leaf litter. Carbon stock in the fragment was 139.7 Mg ha-1. Soil was the matrix contributing the most to stocked C (64.8%), followed by the shoot portion (26.3%), roots (5.2%) and leaf litter (3.7%).


Sign in / Sign up

Export Citation Format

Share Document