scholarly journals Systems Analysis of Ionic Liquids for Post-combustion CO2 Capture at Coal-fired Power Plants

2014 ◽  
Vol 63 ◽  
pp. 1321-1328 ◽  
Author(s):  
Haibo Zhai ◽  
Edward S. Rubin
2009 ◽  
Vol 62 (4) ◽  
pp. 298 ◽  
Author(s):  
Junhua Huang ◽  
Thomas Rüther

As the climate debate is hotting up, so is the (re)search for finding powerful new materials for the efficient and cost-effective removal of CO2 from flue-gas streams from power plants and other emission sources. Ionic liquids (ILs), exhibiting higher CO2 solubility than conventional organic solvents, have received considerable interest as new CO2 absorbents. The present paper evaluates the advantages and disadvantages of ILs, and provides an overview of the recent developments of ILs for CO2 capture. In conventional ILs, CO2 is absorbed by occupying the free space between the ions through physical absorption mechanisms. As another promising strategy, task-specific ILs have been studied that, by attaching functional groups to the ions, allow the formation of chemical bonds to improve the overall absorption capacity during the CO2 capture process. Other strategies include using ILs as reaction media or as selective absorption materials.


2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


2021 ◽  
Vol 96 ◽  
pp. 105173
Author(s):  
Bo Yang ◽  
Yi-Ming Wei ◽  
Lan-Cui Liu ◽  
Yun-Bing Hou ◽  
Kun Zhang ◽  
...  

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


Sign in / Sign up

Export Citation Format

Share Document