scholarly journals CO2-DISSOLVED: a Novel Concept Coupling Geological Storage of Dissolved CO2 and Geothermal Heat Recovery – Part 1: Assessment of the Integration of an Innovative Low-cost, Water- based CO2 Capture Technology

2014 ◽  
Vol 63 ◽  
pp. 4508-4518 ◽  
Author(s):  
C. Kervévan ◽  
M.-H. Beddelem ◽  
K. O’Neil
2017 ◽  
Vol 114 ◽  
pp. 4086-4098 ◽  
Author(s):  
C. Kervévan ◽  
M.-H. Beddelem ◽  
X. Galiègue ◽  
Y. Le Gallo ◽  
F. May ◽  
...  

Author(s):  
J. Carlos Abanades ◽  
Diego Alvarez ◽  
Edward J. Anthony ◽  
Dennis Lu

Increasing atmospheric concentration of CO2 and concern over its effect on climate is a powerful driving force for the development of new advanced energy cycles incorporating CO2 capture. This paper investigates the feasibility of CO2 capture using the carbonation reaction of CaO “in situ” in a fluidised bed combustor, where natural gas or petroleum coke (or any other fuel with low ash content) is being burned. The sorbent can be partially regenerated for CO2 capture by combustion of part of the fuel with O2/CO2 in a separate FBC. The thermodynamic limits in the proposed cycles, in terms of CO2 capture efficiencies, are examined along with the limits imposed by the rapid decay in the sorbent activity during repeated carbonation/calcination cycles, which will be exacerbated by the presence of S. Despite these limitations, it is shown that operating windows exist where it is possible to integrate fuel combustion, CO2 and SO2 capture in a single dual reactor facility. The decay in activity in the sorbent appears to be the major practical limitation to this concept, but this can be compensated for by using a relatively large supply of fresh sorbent, which appears to be acceptable considering the low cost of limestone. Also, a novel concept to reactivate the spent sorbent using sonic energy is outlined here as an alternative to reduce the use of fresh limestone.


2021 ◽  
Author(s):  
Xiaojing Zhang ◽  
xinyi Ge ◽  
Zhigang Shen ◽  
Han Ma ◽  
Jingshi Wang ◽  
...  

Compared with environmentally harmful binder polyvinylidene fluoride (PVDF) in Li-ion batteries (LIBs), water-based binders have many advantages, such as low cost, rich sources and environmental friendliness. In this study, various...


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 821
Author(s):  
Aneeqa Bashir ◽  
Mehwish Farooq ◽  
Abdul Malik ◽  
Shahzad Naseem ◽  
Arshad Saleem Bhatti

An environmentally friendlier solution processing has been introduced to fabricate zirconium oxide (ZrO2) films on quartz substrates, using spin coating of simple water-based solution. The films cured with UV-A = 330 nm for different times (40, 80, 120 min) were investigated for structural and optical properties and compared with thermally annealed film (at 350 °C). XRD and Raman spectroscopy showed amorphous structure in all the samples with no significant phase transformation with UV-A exposure. AFM microscopy showed smooth and crack free films with surface roughness ≤2 nm that reduced with UV-A exposure. Ultraviolet-visible (UV–Vis) spectroscopy demonstrated optical transmittance ≥88% and energy band gap variations as 4.52–4.70 eV. Optical constants were found from spectroscopic ellipsometry (SE). The refractive index (n) values, measured at 470 nm increased from 1.73 to 2.74 as the UV-A exposure prolonged indicating densification and decreasing porosity of the films. The extinction coefficient k decreased from 0.32 to 0.19 indicating reduced optical losses in the films under the UV-A exposure. The photoluminescence (PL) spectra exhibited more pronounced UV emissions which grew intense with UV-A exposure thereby improving the film quality. It is concluded that UV-A irradiation can significantly enhance the optical properties of ZrO2 films with minimal changes induced in the structure as compared to thermally treated film. Moreover, the present work indicates that water-based solution processing has the potential to produce high-quality ZrO2 films for low cost and environmental friendlier technologies. The work also highlights the use of UV-A radiations as an alternate to high temperature thermal annealing for improved quality.


Sign in / Sign up

Export Citation Format

Share Document