scholarly journals A Diagram of Wind Speed Versus Air-sea Temperature Difference to Understand the Marine atmospheric Boundary Layer

2015 ◽  
Vol 76 ◽  
pp. 138-147 ◽  
Author(s):  
Anthony James Kettle
2010 ◽  
Vol 40 (10) ◽  
pp. 2325-2332 ◽  
Author(s):  
Richard J. Foreman ◽  
Stefan Emeis

Abstract A new functional form of the neutral drag coefficient for moderate to high wind speeds in the marine atmospheric boundary layer for a range of field measurements as reported in the literature is proposed. This new form is found to describe a wide variety of measurements recorded in the open ocean, coast, fetch-limited seas, and lakes, with almost one and the same set of parameters. This is the result of a reanalysis of the definition of the drag coefficient in the marine boundary layer, which finds that a constant is missing from the traditional definition of the drag coefficient. The constant arises because the neutral friction velocity over water surfaces is not directly proportional to the 10-m wind speed, a consequence of the transition to rough flow at low wind speeds. Within the rough flow regime, the neutral friction velocity is linearly dependent on the 10-m wind speed; consequently, within this rough regime, the new definition of the drag coefficient is not a function of the wind speed. The magnitude of the new definition of the neutral drag coefficient represents an upper limit to the magnitude of the traditional definition.


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


2013 ◽  
Vol 94 (11) ◽  
pp. 1691-1706 ◽  
Author(s):  
A. A. M. Holtslag ◽  
G. Svensson ◽  
P. Baas ◽  
S. Basu ◽  
B. Beare ◽  
...  

The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For this purpose, single-column versions of weather and climate models have been compared with observations, research models, and large-eddy simulations. The intercomparison cases are based on observations taken in the Arctic, Kansas, and Cabauw in the Netherlands. From these studies, we find that even for the noncloudy boundary layer important parameterization challenges remain.


Sign in / Sign up

Export Citation Format

Share Document