scholarly journals Effect of Steam Explosion Pretreatment on Sugar Production by Enzymatic Hydrolysis of Olive Tree Pruning

2015 ◽  
Vol 81 ◽  
pp. 146-154 ◽  
Author(s):  
Marco Barbanera ◽  
Cinzia Buratti ◽  
Franco Cotana ◽  
Daniele Foschini ◽  
Elisa Lascaro
2006 ◽  
Vol 41 (2) ◽  
pp. 423-429 ◽  
Author(s):  
Cristóbal Cara ◽  
Encarnación Ruiz ◽  
Ignacio Ballesteros ◽  
María J. Negro ◽  
Eulogio Castro

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4552 ◽  
Author(s):  
Merve Nazli Borand ◽  
Asli Isler Kaya ◽  
Filiz Karaosmanoglu

Pressure, temperature, and retention time are the most studied parameters in steam explosion pretreatment. However, this work aimed to fix these parameters and to evaluate the influences of several less investigated steam explosion parameters on the saccharification yield in hydrolysis. In this study, firstly, pinewood samples smaller than 200 µm were treated with steam explosion at 190 °C for 10 min. The variable parameters were biomass loading, N2 pressure, and release time. Steam-exploded samples were hydrolyzed with the Trichoderma reesei enzyme for saccharification for 72 h. The sugar content of the resultant products was analyzed to estimate the yield of sugars (such as glucose, xylose, galactose, mannose, and arabinose). The best glucose yield in the pulp was achieved with 4 g of sample, N2 pressure of 0.44 MPa, and short release time (22 s). These conditions gave a glucose yield of 97.72% in the pulp, and the xylose, mannose, galactose, and arabinose yields in the liquid fraction were found to be 85.59%, 87.76%, 86.43%, and 90.3%, respectively.


2010 ◽  
Vol 110 (4) ◽  
pp. 449-452 ◽  
Author(s):  
Masayuki Taniguchi ◽  
Daisuke Takahashi ◽  
Daisuke Watanabe ◽  
Kenji Sakai ◽  
Kazuhiro Hoshino ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3653 ◽  
Author(s):  
Robert Balan ◽  
Andrzej Antczak ◽  
Simone Brethauer ◽  
Tomasz Zielenkiewicz ◽  
Michael H. Studer

Steam explosion is a well-known process to pretreat lignocellulosic biomass in order to enhance sugar yields in enzymatic hydrolysis, but pretreatment conditions have to be optimized individually for each material. In this study, we investigated how the results of a pretreatment optimization procedure are influenced by the chosen reaction conditions in the enzymatic hydrolysis. Beechwood was pretreated by steam explosion and the resulting biomass was subjected to enzymatic hydrolysis at glucan loadings of 1% and 5% employing either washed solids or the whole pretreatment slurry. For enzymatic hydrolysis in both reaction modes at a glucan loading of 1%, the glucose yields markedly increased with increasing severity and with increasing pretreatment temperature at identical severities and maximal values were reached at a pretreatment temperature of 230 °C. However, the optimal severity was 5.0 for washed solids enzymatic hydrolysis, but only 4.75 for whole slurry enzymatic hydrolysis. When the glucan loading was increased to 5%, glucose yields hardly increased for pretreatment temperatures between 210 and 230 °C at a given severity, and a pretreatment temperature of 220 °C was sufficient under these conditions. Consequently, it is important to precisely choose the desired conditions of the enzymatic hydrolysis reaction, when aiming to optimize the pretreatment conditions for a certain biomass.


Holzforschung ◽  
2011 ◽  
Vol 65 (2) ◽  
Author(s):  
Manuel J. Díaz ◽  
Wouter J.J. Huijgen ◽  
Ron R. van der Laan ◽  
Johannes H. Reith ◽  
Cristóbal Cara ◽  
...  

Abstract Olive tree pruning biomass is one of the main agricultural residues available in Mediterranean countries and is currently lacking commercial applications. To take advantage of its sugar content, a pretreatment is necessary to enhance enzyme accessibility of the cellulose fraction of the residue. This paper describes for the first time the use of organosolv pretreatment in this regard. The main process variables such as pretreatment temperature, residence time, and solvent composition (aqueous ethanol) are studied. Results show that organosolv pretreatment causes delignification and hydrolysis of hemicelluloses and improves the enzymatic digestibility of olive tree pruning biomass. A higher pretreatment severity and ethanol content of the solvent were found to increase delignification (up to 64% at 66% w/w aqueous ethanol, 210°C, 60 min). By contrast, xylan hydrolysis was promoted by a lower ethanol content (maximum 92%). The highest enzymatic hydrolysis yield (90% of the structural glucan present in the raw material) has been obtained after pretreatment with 43% w/w aqueous ethanol at 210°C for 15 min. Organosolv pretreatment was found to be the most effective pretreatment for enzymatic hydrolysis of olive tree pruning biomass.


Sign in / Sign up

Export Citation Format

Share Document