scholarly journals Experimental Research of a Thermoelectric Cooling System Integrated with Gravity Assistant Heat Pipe for Cooling Electronic Devices

2017 ◽  
Vol 105 ◽  
pp. 4909-4914 ◽  
Author(s):  
Xiaoqin Sun ◽  
Yanjia Yang ◽  
Hongliang Zhang ◽  
Huiwei Si ◽  
Liang Huang ◽  
...  
Author(s):  
Tomonao Takamatsu ◽  
Katsumi Hisano ◽  
Hideo Iwasaki

In this paper is presented the results on performance of the cooling model using Loop Heat Pipe (LHP) system. In recent years, ever-ending demand of high performance CPU led to a rapid increase in the amount of heat dissipation. Consequently, thermal designing of electronic devices need to consider some suitable approach to achieve high cooling performance in limited space. Heat Pipe concept is expected to serve as an effective cooling system for laptop PC, however, it suffered from some problems as follows. The heat transport capability of conventional Heat Pipe decreases with the reduction in its diameter or increase in its length. Therefore, in order to use it as cooling system for future electronic devices, the above-mentioned limitations need to be removed. Because of the operating principle, the LHP system is capable of transferring larger amount of heat than conventional heat pipes. However, most of the LHP systems suffered from some problems like the necessity of installing check valves and reservoirs to avoid occurrence of counter flow. Therefore, we developed a simple LHP system to install it on electronic devices. Under the present experimental condition (the working fluid was water), by keeping the inside diameter of liquid and vapor line equal to 2mm, and the distance between evaporator and condenser equal to 200mm, it was possible to transport more than 85W of thermal energy. The thickness of evaporator was about 5mm although it included a structure to serve the purpose of controlling vapor flow direction inside it. Successful operation of this system at inclined position and its restart capability are confirmed experimentally. In order to make the internal water location visible, the present LHP system is reconstructed using transparent material. In addition, to estimate the limit of heat transport capability of the present LHP system using this thin evaporator, the air cooling system is replaced by liquid cooling one for condensing device. Then this transparent LHP system could transport more than 100W of thermal energy. However, the growth of bubbles in the reserve area with the increase in heat load observed experimentally led to an understanding that in order to achieve stable operation of the LHP system under high heat load condition, it is very much essential to keep enough water in the reserve area and avoid blocking the inlet with bubbles formation.


2004 ◽  
Vol 11 (4) ◽  
pp. 407-416 ◽  
Author(s):  
Xuegong Hu ◽  
Yaohua Zhao ◽  
Xiaohong Yan ◽  
T. Tsuruta

Author(s):  
Hamidreza Behi ◽  
Danial Karimi ◽  
Foad Heidari Gandoman ◽  
Mohsen Akbarzadeh ◽  
Sahar Khaleghi ◽  
...  

2016 ◽  
Vol 196 (3) ◽  
pp. 598-613 ◽  
Author(s):  
Kyung Mo Kim ◽  
Yeong Shin Jeong ◽  
In Guk Kim ◽  
In Cheol Bang

Author(s):  
Seyyed Khandani ◽  
Himanshu Pokharna ◽  
Sridhar Machiroutu ◽  
Eric DiStefano

Remote heat pipe based heat exchanger cooling systems are becoming increasingly popular in cooling of notebook computers. In such cooling systems, one or more heat pipes transfer the heat from the more populated area to a location with sufficient space allowing the use of a heat exchanger for removal of the heat from the system. In analsysis of such systems, the temperature drop in the condenser section of the heat pipe is assumed negligible due to the nature of the condensation process. However, in testing of various systems, non linear longitudinal temperature drops in the heat pipe in the range of 2 to 15 °C, for different processor power and heat exchanger airflow, have been measured. Such temperature drops could cause higher condenser thermal resistance and result in lower overall heat exchanger performance. In fact the application of the conventional method of estimating the thermal performance, which does not consider such a nonlinear temperature variations, results in inaccurate design of the cooling system and requires unnecessarily higher safety factors to compensate for this inaccuracy. To address the problem, this paper offers a new analytical approach for modeling the heat pipe based heat exchanger performance under various operating conditions. The method can be used with any arbitrary condenser temperature variations. The results of the model show significant increase in heat exchanger thermal resistance when considering a non linear condenser temperature drop. The experimental data also verifies the result of the model with sufficient accuracy and therefore validates the application of this model in estimating the performance of these systems.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.


2017 ◽  
Vol 53 (11) ◽  
pp. 3241-3247 ◽  
Author(s):  
Mohammad Shahed Ahamed ◽  
Yuji Saito ◽  
Koichi Mashiko ◽  
Masataka Mochizuki

2019 ◽  
Vol 180 ◽  
pp. 769-783 ◽  
Author(s):  
Wenjie Zhou ◽  
Yong Li ◽  
Zhaoshu Chen ◽  
Liqiang Deng ◽  
Yunhua Gan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document