scholarly journals Up-conversion of sunlight by GaInP/GaAs/Ge cell stacks: Limiting efficiency, practical limitation and comparison with tandem cells

2017 ◽  
Vol 130 ◽  
pp. 60-65 ◽  
Author(s):  
Dongchen Lan ◽  
Martin A. Green
Author(s):  
Takafumi Nishino ◽  
Richard H. J. Willden

Recent discoveries on the limiting efficiency of tidal fences are reviewed, followed by a new theoretical investigation into the effect of wake mixing on the efficiency of ‘full’ tidal fences (i.e. turbines arrayed regularly across an entire channel span). The new model is based on the momentum and energy balance equations but includes several unclosed terms, which depend on the actual (three-dimensional) characteristics of turbine near-wake mixing and therefore need to be modelled empirically. The new model agrees well with three-dimensional actuator disk simulations when those unclosed terms are assessed based on the simulations themselves, suggesting that this low-order model could serve as a basis to analyse how various physical factors (such as the design of turbines) affect the limiting efficiency of tidal fences via changes in those terms describing the characteristics of turbine near-wake mixing. Also discussed is the effect of wake mixing on the efficiency of ‘partial’ tidal fences.


2020 ◽  
Author(s):  
Masafumi Yamaguchi

The III-V compound solar cells represented by GaAs solar cells have contributed as space and concentrator solar cells and are important as sub-cells for multi-junction solar cells. This chapter reviews progress in III-V compound single-junction solar cells such as GaAs, InP, AlGaAs and InGaP cells. Especially, GaAs solar cells have shown 29.1% under 1-sun, highest ever reported for single-junction solar cells. In addition, analytical results for non-radiative recombination and resistance losses in III-V compound solar cells are shown by considering fundamentals for major losses in III-V compound materials and solar cells. Because the limiting efficiency of single-junction solar cells is 30-32%, multi-junction junction solar cells have been developed and InGaP/GaAs based 3-junction solar cells are widely used in space. Recently, highest efficiencies of 39.1% under 1-sun and 47.2% under concentration have been demonstrated with 6-junction solar cells. This chapter also reviews progress in III-V compound multi-junction solar cells and key issues for realizing high-efficiency multi-junction cells.


2005 ◽  
Vol 865 ◽  
Author(s):  
W. Walukiewicz ◽  
K. M. Yu ◽  
J Wu ◽  
J. W. Ager ◽  
W. Shan ◽  
...  

AbstractIt has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a “stepping stone” for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn1-yMnyOxTe1-x alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn1-yMnyOxTe1-x alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.


Sign in / Sign up

Export Citation Format

Share Document