scholarly journals Investigation into a multi-stage rotor rotating magnetic field generator powered by ocean current

2017 ◽  
Vol 136 ◽  
pp. 121-126
Author(s):  
Han Yuan ◽  
Jian Zhao ◽  
Lu Wang ◽  
Ning Mei
2012 ◽  
Vol 152-154 ◽  
pp. 1698-1704 ◽  
Author(s):  
Wen Chang Lang ◽  
Bai Zhong Wu ◽  
Bin Gao

Based on the principle of the control of magnetic field on arc spot motion, a compact and multi-function magnetic field steered arc source has been designed in this paper. The rotating magnetic field generator driven by small DC motors or AC motors has been also equipped behind the base of the target materials of magnetic field steered arc source. The magnet yoke fixed on shaft will be driven by the motors so as to promote the rotation of permanent magnets which are rationally distributed on magnet yoke. The different distribution of permanent magnets will produce the rotating magnetic field with different configuration structures and then the purpose of multi-control mode can be achieved. Meanwhile, the dynamic rotating magnetic field with different configurations have been also produced in this design through employing the simple and compact arc source as well as the permanent magnet with different distributions in order to improve the discharge form of arc spots, control the trajectory of arc spots, improve the utilization of target materials and the uniformity of etching as well as reduce or inhibit the emission of large particles. At the same time, the high-quality film can be also prepared so as to realize the arc spot control with various forms in an arc source, satisfy the different demands and expand the application of arc ion plating.


2021 ◽  
Author(s):  
Lin Tang ◽  
Xingchen Ge ◽  
Chengjin Shi ◽  
Lifeng Zhang ◽  
Kaige Zhai

Abstract Aiming at the problem of poor surface quality of multi-stage inner conical hole parts in electrochemical machining, a hydraulic self driving rotating magnetic field assisted electrochemical machining method is proposed, a hydraulic self driving rotating flow field model is established and simulated, and the structure of cathode tail blades is optimized. The simulation results show that when the number of cathode blades is 3 and the thickness of blades is 0.8mm, When the electrolyte flow rate is not less than 5m/s, the impeller at the tail of the cathode mandrel can rotate stably. A hydraulic self driving rotating magnetic field assisted electrochemical machining cathode is designed. When the machining voltage is 10V, the electrolyte temperature is 30 ℃, the electrolyte pressure is 1.6Mpa, the cathode feed speed is 5mm / min, and the electrolyte is 5%NaCl+16%NaNO3+4%NaClO3 composite electrolyte, the comparative experimental study of multi-stage inner conical hole electrochemical machining process with and without rotating magnetic field is carried out, The results show that the surface roughness of the workpiece without magnetic field is Ra0.847μm under the same processing parameters . With the addition of rotating magnetic field, the surface roughness of the workpiece is Ra0.437μm. The surface quality was improved by 48.41%.


Author(s):  
О. Karlov ◽  
◽  
I. Kondratenko ◽  
R. Kryshchuk ◽  
A. Rashchepkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document