scholarly journals Multi-stage Inner Conical Hole Hydraulic Self Driving Rotating Magnetic Field Assisted Electrolytic Machining

Author(s):  
Lin Tang ◽  
Xingchen Ge ◽  
Chengjin Shi ◽  
Lifeng Zhang ◽  
Kaige Zhai

Abstract Aiming at the problem of poor surface quality of multi-stage inner conical hole parts in electrochemical machining, a hydraulic self driving rotating magnetic field assisted electrochemical machining method is proposed, a hydraulic self driving rotating flow field model is established and simulated, and the structure of cathode tail blades is optimized. The simulation results show that when the number of cathode blades is 3 and the thickness of blades is 0.8mm, When the electrolyte flow rate is not less than 5m/s, the impeller at the tail of the cathode mandrel can rotate stably. A hydraulic self driving rotating magnetic field assisted electrochemical machining cathode is designed. When the machining voltage is 10V, the electrolyte temperature is 30 ℃, the electrolyte pressure is 1.6Mpa, the cathode feed speed is 5mm / min, and the electrolyte is 5%NaCl+16%NaNO3+4%NaClO3 composite electrolyte, the comparative experimental study of multi-stage inner conical hole electrochemical machining process with and without rotating magnetic field is carried out, The results show that the surface roughness of the workpiece without magnetic field is Ra0.847μm under the same processing parameters . With the addition of rotating magnetic field, the surface roughness of the workpiece is Ra0.437μm. The surface quality was improved by 48.41%.

2021 ◽  
Author(s):  
Hao Qu ◽  
Lin Zhang ◽  
Zhe Chen ◽  
Lei Zhang ◽  
Kyle Jiang ◽  
...  

Abstract In this study a pulsed magnetic treatment was attempted to improve the cutting performance of the TiAlSiN coated WC-12wt%Co cemented carbide end mills and the effects of the strength of the pulsed magnetic field on the cutting forces, the cutting vibrations, the tool wear, the machined surface roughness and mechanical properties were investigated. It is found that the cutting performances of the coated tools are successfully improved with a relatively lower cutting force and less wear area. The average resultant cutting force Fxyave decrease by 14.53% in the last machining process when the optimum processing parameters of 0.5T magnetic field is used, accompanying a maximum decrease of 46.8% in the cutting vibration. The maximum reductions of 57.65% and 25.4% in the flank wear and the average surface roughness of the workpiece are obtained respectively after the treatment. Both the hardness and toughness of the cemented carbides are slightly improved with the imposition of the field. The improvements in the cutting performance of the tool are attributed to the enhanced adhesion strength between the coating and matrix, which is caused by the increased compressive residual stress induced by the PMT.


2009 ◽  
Vol 69-70 ◽  
pp. 253-257
Author(s):  
Ping Zhao ◽  
Jia Jie Chen ◽  
Fan Yang ◽  
K.F. Tang ◽  
Ju Long Yuan ◽  
...  

Semi-fixed abrasive is a novel abrasive. It has a ‘trap’ effect on the hard large grains that can prevent defect effectively on the surface of the workpiece which is caused by large grains. In this paper, some relevant experiments towards silicon wafers are carried out under the different processing parameters on the semi-fixed abrasive plates, and 180# SiC is used as large grains. The processed workpieces’ surface roughness Rv are measured. The experimental results show that the surface quality of wafer will be worse because of higher load and faster rotating velocity. And it can make a conclusion that the higher proportion of bond of the plate, the weaker of the ‘trap’ effect it has. Furthermore the wet environment is better than dry for the wafer surface in machining. The practice shows that the ‘trap’ effect is failure when the workpiece is machined by abrasive plate which is 4.5wt% proportion of bond in dry lapping.


Author(s):  
Rajkeerthi E ◽  
Hariharan P

Abstract Surface integrity of micro components is a major concern particularly in manufacturing industries as most geometry of the products must meet out necessary surface quality requirements. Advanced machining process like electrochemical micro machining possess the capabilities to machine micro parts with best surface properties exempting them from secondary operations. In this research work, different electrolytes have been employed for producing micro holes in A286 super alloy material to achieve the best surface quality and the measurement of surface roughness and surface integrity to evaluate the machined surface is carried out. The machined micro hole provides detailed information on the geometrical features. A study of parametric analysis meant for controlling surface roughness and improvement of surface integrity has been made to find out the suitable parameters for machining. The suitability of various electrolytes with their dissolution mechanism and the influence of various electrolytes have been thoroughly studied. Among the utilized electrolytes, EG + NaNO3 electrolyte provided the best results in terms of overcut and average surface roughness.


Author(s):  
Ze Yu ◽  
Dunwen Zuo ◽  
Yuli Sun ◽  
Guohua Li ◽  
Xuemei Chen ◽  
...  

To simultaneously optimize the surface quality and machining efficiency of the electrical discharge machining (EDM) processes used to produce titanium alloy quadrilateral group small hole parts, a combined “EDM + AFM” machining technology is proposed in this paper as an efficient and high-quality machining approach. In the proposed method, TC4 titanium alloy is first machined using the EDM process with graphite electrodes and the abrasive flow machining (AFM) process is then used to finish the machined surface. The effects of various electrical parameters on EDM-derived surface quality and improvements in EDM-derived quality under the application of AFM were assessed and, using the final surface roughness as a constraint condition, the effects of various combinations of EDM and “EDM + AFM” on efficiency were studied. The results revealed that the thickness and surface roughness of the superficial recast layer of the TC4 titanium alloy increase with both current and pulse width; in particular, increasing these parameters can increase the surface roughness by two to three grades. Following AFM, the alloy has a more uniform hardness distribution and the surface stress state changes from tensile to compressive stress, indicating that the combined “EDM + AFM” machining scheme can significantly enhance the surface quality of EDM-produced titanium alloy quadrilateral small group holes. The combined scheme achieves a balancing point beyond which increasing the roughness or the number of machining holes enhances either the machining efficiency or the machining surface quality. In the case of typical titanium alloy quadrilateral group small hole parts, the combined machining process can improve the finishing efficiency and total machining efficiency by 71.2% and 25.36%, respectively.


2012 ◽  
Vol 576 ◽  
pp. 119-122 ◽  
Author(s):  
A.K.M. Nurul Amin ◽  
Syidatul Akma Sulaiman ◽  
Siti Noor Izzati Mohd Zainun ◽  
M.D. Arif

Chatter phenomenon is a major issue as it greatly affects the topography of machined parts. Due to the inconsistent character of chatter, it is extremely difficult to predict resultant surface roughness in a machining process, such as end milling. Also, recent studies have shown that chatter can be suitably damped using magnetic fields. This paper, thus, focuses on a novel approach of minimizing surface roughness in end milling of Mild (Low Carbon) Steel using uncoated WC-Co inserts under magnetic field from permanent magnets. In this experiment, Response Surface Methodology (RSM) approach using DESIGN EXPERT 6.0 (DOE) software was used to design the experiments. The experiments were performed under two different cutting conditions. The first one was cutting under normal conditions, while the other was cutting under the application of magnetic fields from two permanent magnets positioned on opposite sides of the cutter. Surface roughness was measured using Mitutoyo SURFTEST SV-500 profilometer. The subsequent analysis showed that surface roughness was significantly reduced (by as much as 67.21%) when machining was done under the influence of magnetic field. The experimental results were then used to develop a second order empirical mathematical model equation for surface roughness and validated to 95% confidence level by using ANOVA. Finally, desirability function approach was used to optimize the surface roughness within the limiting values attainable in end milling.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5943
Author(s):  
Arminder Singh Walia ◽  
Vineet Srivastava ◽  
Mayank Garg ◽  
Nalin Somani ◽  
Nitin Kumar Gupta ◽  
...  

In electrical discharge machining (EDM), the machined surface quality can be affected by the excessive temperature generation during the machining process. To achieve a longer life of the finished part, the machined surface quality plays a key role in maintaining its overall integrity. Surface roughness is an important quality evaluation of a material’s surface that has considerable influence on mechanical performance of the material. Herein, a sintered cermet tooltip with 75% copper and 25% titanium carbide was used as tool electrode for processing H13 steel. The experiments have been performed to investigate the effects of EDM parameters on the machined surface roughness. The findings show that, as the pulse current, pulse length, and pulse interval are increased, the surface roughness tends to rise. The most significant determinant for surface roughness was found to be pulse current. A semi-empirical surface roughness model was created using the characteristics of the EDM technique. Buckingham’s theorem was used to develop a semi-empirical surface roughness prediction model. The semi-empirical model’s predictions were in good agreement with the experimental studies, and the built empirical model based on physical features of the cermet tooltip was tested using dimensional analysis.


Author(s):  
Takayuki Nakamura ◽  
Kohei Ichikawa ◽  
Masanobu Hasegawa ◽  
Jun'ichi Kaneko ◽  
Takeyuki Abe

Abstract In recent machining processes, 5-axis controlled machine tool is widely used for machining complicated workpiece shape with curved surface. In such process, to achieve high productivity, planning method of cutting conditions to satisfy both following the commanded tool feed rate in machining process and realization of good surface roughness are required. In conventional study, it is known that lead angle of tool posture against local machined surface influence the surface roughness. Then, common commercial CAM systems have already functioned to avoid interference and control the lead angle in each cutter location. However, in the generated cutter locations by the conventional algorithms, when the tool posture changes rapidly, there is a problem that actual feed rate does not reach the command value and machining time becomes longer than expected. In this paper, we propose the new tool posture correction algorithm. In the proposed method, first, the rotational axis that causes the feed speed rate decline is specified by preliminary experiments. And, the jerk value that is the threshold for the feed speed decline is investigated. After that, for the NC program, the command value of the target axis is modified within a range where interference of cutting tool does not occur, thereby preventing a decline in the actual feed rate. This paper describes an outline of the proposed modification method and the effect of the modification of the target axis positions on the lead angle and the actual feed rate.


Sign in / Sign up

Export Citation Format

Share Document