scholarly journals Morphological Studies of Mixed Methane Tetrahydrofuran Hydrates in Saline Water for Energy Storage Application

2017 ◽  
Vol 143 ◽  
pp. 786-791 ◽  
Author(s):  
Gaurav Pandey ◽  
Asheesh Kumar ◽  
Hari Prakash Veluswamy ◽  
Jitendra Sangwai ◽  
Praveen Linga
Author(s):  
Roberto González-De Zayas ◽  
Liosban Lantigua Ponce de León ◽  
Liezel Guerra Rodríguez ◽  
Felipe Matos Pupo ◽  
Leslie Hernández-Fernández

The Cenote Jennifer is an important and unique aquatic sinkhole in Cayo Coco (Jardines del Rey Tourist Destination) that has brackish to saline water. Two samplings were made in 1998 and 2009, and 4 metabolism community experiments in 2009. Some limnological parameters were measured in both samplings (temperature, salinity, pH, dissolved oxygen major ions, hydrogen sulfide, nutrients and others). Community metabolism was measured through incubated oxygen concentration in clear and dark oxygen bottles. Results showed that the sinkhole limnology depends on rainfall and light incidence year, with some stratification episodes, due to halocline or oxycline presence, rather than thermocline. The sinkhole water was oligotrophic (total nitrogen of 41.5 ± 22.2 μmol l−1 and total phosphorus of 0.3 ± 0.2 μmol l−1) and with low productivity (gross primary productivity of 63.0 mg C m−2 d−1). Anoxia and hypoxia were present at the bottom with higher levels of hydrogen sulfide, lower pH and restricted influence of the adjacent sea (2 km away). To protect the Cenote Jennifer, tourist exploitation should be avoided and more resources to ecological and morphological studies should be allocated, and eventually use this aquatic system only for specialized diving. For conservation purposes, illegal garbage disposal in the surrounding forest should end.


Author(s):  
Atchudan Raji ◽  
Jebakumar Immanuel Edison Thomas Nesakumar ◽  
Shanmugam Mani ◽  
Suguna Perumal ◽  
Vinodh Rajangam ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1183
Author(s):  
Shujahadeen B. Aziz ◽  
Ahmad S. F. M. Asnawi ◽  
Mohd Fakhrul Zamani Kadir ◽  
Saad M. Alshehri ◽  
Tansir Ahamad ◽  
...  

In this work, a pair of biopolymer materials has been used to prepare high ion-conducting electrolytes for energy storage application (ESA). The chitosan:methylcellulose (CS:MC) blend was selected as a host for the ammonium thiocyanate NH4SCN dopant salt. Three different concentrations of glycerol was successfully incorporated as a plasticizer into the CS–MC–NH4SCN electrolyte system. The structural, electrical, and ion transport properties were investigated. The highest conductivity of 2.29 × 10−4 S cm−1 is recorded for the electrolyte incorporated 42 wt.% of plasticizer. The complexation and interaction of polymer electrolyte components are studied using the FTIR spectra. The deconvolution (DVN) of FTIR peaks as a sensitive method was used to calculate ion transport parameters. The percentage of free ions is found to influence the transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D). All electrolytes in this work obey the non-Debye behavior. The highest conductivity electrolyte exhibits the dominancy of ions, where the ionic transference number, tion value of (0.976) is near to infinity with a voltage of breakdown of 2.11 V. The fabricated electrochemical double-layer capacitor (EDLC) achieves the highest specific capacitance, Cs of 98.08 F/g at 10 mV/s by using the cyclic voltammetry (CV) technique.


2021 ◽  
pp. 129191
Author(s):  
Han-Wei Hsieh ◽  
Chueh -Han Wang ◽  
An-Feng Huang ◽  
Wei-Nien Su ◽  
Bing Joe Hwang

Sign in / Sign up

Export Citation Format

Share Document