scholarly journals Predator–Prey based firefly optimization for PV Module parameters extraction

2021 ◽  
Vol 7 ◽  
pp. 609-615
Author(s):  
K. Mohana sundaram ◽  
C.S. Boopathi ◽  
A. Pandian ◽  
Kalyan Sagar Kadali ◽  
Ravishankar Sathyamurthy ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4825 ◽  
Author(s):  
Nader Anani ◽  
Haider Ibrahim

This paper presents a succinct exploration of several analytical methods for extracting the parameters of the single-diode model (SDM) of a photovoltaic (PV) module under standard test conditions (STC). The paper investigates six methods and presents the detailed mathematical analysis leading to the development of each method. To evaluate the performance of these methods, MATLAB-based software has been devised and deployed to generate the results of each method when used to extract the SDM parameters of various PV test modules of different PV technologies. Similar software has also been developed to extract the same parameters using well-established numerical and iterative techniques. A comparison is subsequently made between the synthesized results and those obtained using numerical and iterative methods. The comparison indicates that although analytical methods may involve a significant amount of approximations, their accuracy can be comparable to that of their numerical and iterative counterparts, with the added advantage of a significant reduction in computational complexity, and without the initialization and convergence difficulties, which are normally associated with numerical methods.


Author(s):  
Nader Anani ◽  
Haider Ibrahim

This paper presents a concise exploration of several analytical methods for extracting the parameters of the single-diode model (SDM) of a photovoltaic (PV) module under standard test conditions (STC). The paper investigates six methods and presents the detailed mathematical analysis leading to the development of each method. To evaluate the performance of these methods, MATLAB-based software has been developed and deployed to synthesize the results of each method when used to extract the SDM parameters of various PV test modules of different PV technologies. Similar software has also been developed to extract the same parameters using well-established numerical and iterative techniques. A comparison is subsequently made between the synthesized results and those obtained using numerical and iterative methods. The comparison indicates that in spite of the fact that analytical methods may involve fair amount of approximations, their accuracy can be comparable to that of their numerical and iterative counterparts, with the added advantage of significant reduction in computational complexity, and without the initialization and convergence difficulties, which are normally associated with numerical methods.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2798
Author(s):  
Safi Allah Hamadi ◽  
Aissa Chouder ◽  
Mohamed Mounir Rezaoui ◽  
Saad Motahhir ◽  
Ameur Miloud Kaddouri

The identification of actual photovoltaic (PV) model parameters under real operating condition is a crucial step for PV engineering. An accurate and trusted model depends mainly on the accuracy of the model parameters. In this paper, an accurate and enhanced methodology is intended for PV module parameters extraction in outdoor conditions. The proposed methodology combines numerical methods and analytical formulations of the one diode model to derive the five unknown parameters in any operating condition of irradiance and temperature. First, the measured I-V curves at a random weather condition are translated to standard test conditions (i.e., G = 1000 W/m2, T = 25 °C), using translation equations. The second step consists of using an optimization algorithm namely the moth flame algorithm (MFO) to find out the five parameters at standard test conditions. Analytical formulations, at a random irradiance and temperature, are then used to express the unknown parameters at any irradiance and temperature. The proposed approach is validated under outdoor conditions against measured I-V curves at different irradiances and temperatures. The validation has also been performed under dynamic operation where the measured maximum power point coordinates (MPP) are compared to the predicted maximum power points. The obtained results from the adopted hybrid methodology confirm the accuracy of the parameter extraction procedure.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3527 ◽  
Author(s):  
Huawen Sheng ◽  
Chunquan Li ◽  
Hanming Wang ◽  
Zeyuan Yan ◽  
Yin Xiong ◽  
...  

Photovoltaic (PV) models’ parameter extraction with the tested current-voltage values is vital for the optimization, control, and evaluation of the PV systems. To reliably and accurately extract their parameters, this paper presents one improved moths-flames optimization (IMFO) method. In the IMFO, a double flames generation (DFG) strategy is proposed to generate two different types of target flames for guiding the flying of moths. Furthermore, two different update strategies are developed for updating the positions of moths. To greatly balance the exploitation and exploration, we adopt a probability to rationally select one of the two update strategies for each moth at each iteration. The proposed IMFO is used to distinguish the parameter of three test PV models including single diode model (SDM), double diode model (DDM), and PV module model (PMM). The results indicate that, compared with other well-established methods, the proposed IMFO can obtain an extremely promising performance.


1997 ◽  
Author(s):  
Alan B. Bond ◽  
Alan C. Kamil ◽  
Christopher Cink
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


Sign in / Sign up

Export Citation Format

Share Document