scholarly journals Combination of alkali–surfactant–polymer​ flooding and horizontal wells to maximize the oil recovery for high water cut oil reservoir

2021 ◽  
Vol 7 ◽  
pp. 5955-5964
Author(s):  
Jianguang Wei ◽  
Jiangtao Li ◽  
Xuedong Shi ◽  
Runnan Zhou
2021 ◽  
Author(s):  
Hongfu Shi ◽  
Zhongbo Xu ◽  
Hui Cai ◽  
Wenjun Zhang ◽  
Yunting Li

Abstract At present, the Bohai Oilfield has entered the late stage of high water cut, with a high degree of flooding and an average water cut of more than 80%. Horizontal wells were widely used in tapping the potentials of high water-cut oilfields with avoiding local water flooding, accurately develop enrichment of remaining oil, and improving initial productivity. Until 2020, there are more than 1,200 horizontal wells in the Bohai Oilfield, with daily production accounting for more than 40% of the entire oilfield. However, mainly continental deposits, strong heterogeneity, heavy oil, relatively large mobility ratio, long-term water flooding, and large liquid production have resulted in the obvious dominant channels in the formation, intensified ineffective water circulation, and low oil recovery. The application of horizontal wells faces huge challenges due to the serious water flooding and the prevalence of thief zones. Inflow Control Device (ICD) is becoming more and more prevalent in bottom water reservoirs as it can delay the water breakthrough and significantly improve the economic benefit of a project by producing more oil and less water. The strong microscopic heterogeneity along the horizontal water channeling outside the screen or water channeling along the annulus between the screen and ICD tubular is responsible for the short term even ineffective effect of conventional ICD. Based on the review of the conventional ICD application in the Q oilfield, a workflow is present to design and optimize hybrid ICD to increase the success probability of the validity period of water control.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Chuan Lu ◽  
Huiqing Liu ◽  
Qiang Zheng ◽  
Qingbang Meng

For the development of oil reservoir with bottom water, it is significant to analyze the impact of drawdown pressures on post water breakthrough performance of horizontal wells. Based on a small-scale and discretized physical simulation system, the impact of different drawdown pressures and the influence of changing drawdown pressures in different water cut stage have been discussed. The results show that for thin oil with relatively high viscosity (87.8 mPa.s), keeping a relatively large drawdown pressure in medium and low water cut stage is reasonable. But enlarging drawdown pressure in high water cut stage is harmful to increase ultimate oil recovery. For oil with further lower viscosity (21.4 mPa.s), adopting a small drawdown pressure and increasing it in medium and high water cut stage is reasonable. For the heavy oil (124.1 mPa.s), it is acceptable to enlarge drawdown pressure under the condition of low water cut period.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yongfei Yang ◽  
Haiyuan Yang ◽  
Liu Tao ◽  
Jun Yao ◽  
Wendong Wang ◽  
...  

To investigate the characteristics of oil distribution in porous media systems during a high water cut stage, sandstones with different permeability scales of 53.63 × 10−3 μm2 and 108.11 × 10−3 μm2 were imaged under a resolution of 4.12 μm during a water flooding process using X-ray tomography. Based on the cluster-size distribution of oil segmented from the tomography images and through classification using the shape factor and Euler number, the transformation of the oil distribution pattern in different injection stages was studied for samples with different pore structures. In general, the distribution patterns of an oil cluster continuously change during water injection. Large connected oil clusters break off into smaller segments. The sandstone with a higher permeability (108.11 × 10−3 μm2) shows the larger change in distribution pattern, and the remaining oil is trapped in the pores with a radius of approximately 7–12 μm. Meanwhile, some disconnected clusters merge together and lead to a re-connection during the high water cut period. However, the pore structure becomes compact and complex, the residual nonwetting phase becomes static and is difficult to move; and thus, all distribution patterns coexist during the entire displacement process and mainly distribute in pores with a radius of 8–12 μm. For the pore-scale entrapment characteristics of the oil phase during a high water cut period, different enhance oil recovery (EOR) methods should be considered in sandstones correspondent to each permeability scale.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 402
Author(s):  
Kang Ma ◽  
Hanqiao Jiang ◽  
Junjian Li ◽  
Rongda Zhang ◽  
Kangqi Shen ◽  
...  

As the mature oil fields have stepped into the high water cut stage, the remaining oil is considered as potential reserves, especially the attic oil in the inclined fault-block reservoirs. A novel assisted gas–oil countercurrent technique utilizing gas oil countercurrent (GOC) and water flooding assistance (WFA) is proposed in this study to enhance the remaining oil recovery in sealed fault-block reservoirs. WFA is applied in our model to accelerate the countercurrent process and inhibit the gas channeling during the production process. Four comparative experiments are conducted to illustrate enhanced oil recovery (EOR) mechanisms and compare the production efficiency of assisted GOC under different assistance conditions. The results show that WFA has different functions at different stages of the development process. In the gas injection process, WFA forces the injected gas to migrate upward and shortens the shut-in time by approximately 50% and the production efficiency improves accordingly. Compared with the basic GOC process, the attic oil swept area is extended 60% at the same shut-in time condition and secondary gas cap forms under the influence of WFA. At the production stage, the WFA and secondary gas cap expansion form the bi-directional flooding. The bi-directional flooding also displaces the bypassed oil and replaced attic oil located below the production well, which cannot be swept by the gas cap expansion. WFA inhibits the gas channeling effectively and increases the sweep factor by 26.14% in the production stage. The oil production increases nearly nine times compared with the basic GOC production process. The proposed technique is significant for the development of attic oil in the mature oil field at the high water cut stage.


2012 ◽  
Vol 616-618 ◽  
pp. 992-995
Author(s):  
An Zhu Xu ◽  
Long Xin Mu ◽  
Xiang Hong Wu ◽  
Zi Fei Fan ◽  
Lun Zhao

The dryness of superheated steam is 100% and it exists in the form of pure steam whose properties are like ideal gas. When the steam has a large degree of superheat, it may take a relatively long time to cool, during which time the steam is releasing very little energy and transmitted long distances. The heating radius of superheated steam in the formation is 5-10m larger than saturated steam. In the heating area of superheated steam, the comprehensive effects by superheated steam (crude oil viscosity reduction, improved flow environment, changes in rock wettability and improved oil displacement efficiency, etc.) is much higher than that of saturated steam. Superheated steam stimulation in Kenkyak high water cut heavy oil reservoir pilot test results showed that the average daily oil production of single well by superheated steam stimulation was 2-4 times than that of saturated steam stimulation. Superheated steam is more effective to heat water-invaded oil reservoir than saturated steam.


2013 ◽  
Vol 295-298 ◽  
pp. 3323-3327
Author(s):  
Li Xin Wei ◽  
Xin Peng Le ◽  
Yun Xia Fu ◽  
Zhi Hua Wang ◽  
Yu Wang

In order to optimize the gathering system and reduce the energy consumption in the production, single-pipe concatenation process has been widely used after the tertiary oil recovery technique is applied and development enters into high water cut stage in the oilfield. Aiming at condensate oil in gathering pipeline and obvious increase of the high circle pressure wells in the operation of the process, the adaption relationship between oil gathering pipeline size and flow, as well as the temperature limit of the gathering system start are studied, through the hydraulic and thermodynamic calculations of oil-gas-water multiphase flow. It has directive function for making effective schemes to solve the production problems caused by the high back pressure of wells.


Sign in / Sign up

Export Citation Format

Share Document