Bis(ammonio)alkane-type agonists of muscarinic acetylcholine receptors: Synthesis, in vitro functional characterization, and in vivo evaluation of their analgesic activity

2014 ◽  
Vol 75 ◽  
pp. 222-232 ◽  
Author(s):  
Carlo Matera ◽  
Lisa Flammini ◽  
Marta Quadri ◽  
Valentina Vivo ◽  
Vigilio Ballabeni ◽  
...  
2018 ◽  
Author(s):  
Fabio Riefolo ◽  
Carlo Matera ◽  
Aida Garrido-Charles ◽  
Alexandre M. J. Gomila ◽  
Luca Agnetta ◽  
...  

<p>Remote control of physiological functions with light offers the promise of unveiling their complex spatiotemporal dynamics in vivo, and enabling highly focalized therapeutic interventions with reduced systemic toxicity. Optogenetic methods have been implemented in the heart, but the need of genetic manipulation jeopardizes clinical applicability. This study aims at developing, testing and validating the first light-regulated drug with cardiac effects, in order to avoid the requirement of genetic manipulation offered by optogenetic methods. A M2 muscarinic acetylcholine receptors (mAChRs) light-regulated drug (PAI) was designed, synthesized and pharmacologically characterized. The design was based on the orthosteric mAChRs agonist Iperoxo, an allosteric M2 ligand, and a photoswitchable azobenzene linker. PAI can be reversibly photoisomerized between <i>cis</i> and <i>trans</i> configurations under ultraviolet (UV) and visible light, respectively, and it reversibly photoswitches the activity of M2 muscarinic acetylcholine receptors. We have evaluated <i>in vitro</i> photoresponses using a calcium imaging assay in genetically unmodified receptors overexpressed in mammalian cells. Furthermore, using this new chemical tool, we demonstrate for the first time photoregulation of cardiac function <i>in vivo</i> in wildtype frog tadpoles and in rats with a method that does not require genetic manipulation. Such a new approach may enable enhanced spatial and temporal selectivity for cardiovascular drugs.</p>


2008 ◽  
Vol 41 (9) ◽  
pp. 796-803 ◽  
Author(s):  
K. Peraza-Cruces ◽  
L. Gutiérrez-Guédez ◽  
D. Castañeda Perozo ◽  
C.R. Lankford ◽  
C. Rodríguez-Bonfante ◽  
...  

2019 ◽  
Author(s):  
Fabio Riefolo ◽  
Carlo Matera ◽  
Aida Garrido-Charles ◽  
Alexandre M. J. Gomila ◽  
Luca Agnetta ◽  
...  

<p>Remote control of physiological functions with light offers the promise of unveiling their complex spatiotemporal dynamics in vivo, and enabling highly focalized therapeutic interventions with reduced systemic toxicity. Optogenetic methods have been implemented in the heart, but the need of genetic manipulation jeopardizes clinical applicability. This study aims at developing, testing and validating the first light-regulated drug with cardiac effects, in order to avoid the requirement of genetic manipulation offered by optogenetic methods. A M2 muscarinic acetylcholine receptors (mAChRs) light-regulated drug (PAI) was designed, synthesized and pharmacologically characterized. The design was based on the orthosteric mAChRs agonist Iperoxo, an allosteric M2 ligand, and a photoswitchable azobenzene linker. PAI can be reversibly photoisomerized between <i>cis</i> and <i>trans</i> configurations under ultraviolet (UV) and visible light, respectively, and it reversibly photoswitches the activity of M2 muscarinic acetylcholine receptors. We have evaluated <i>in vitro</i> photoresponses using a calcium imaging assay in genetically unmodified receptors overexpressed in mammalian cells. Furthermore, using this new chemical tool, we demonstrate for the first time photoregulation of cardiac function <i>in vivo</i> in wildtype frog tadpoles and in rats with a method that does not require genetic manipulation. Such a new approach may enable enhanced spatial and temporal selectivity for cardiovascular drugs.</p>


2019 ◽  
Author(s):  
Fabio Riefolo ◽  
Carlo Matera ◽  
Aida Garrido-Charles ◽  
Alexandre M. J. Gomila ◽  
Luca Agnetta ◽  
...  

<p>Remote control of physiological functions with light offers the promise of unveiling their complex spatiotemporal dynamics in vivo, and enabling highly focalized therapeutic interventions with reduced systemic toxicity. Optogenetic methods have been implemented in the heart, but the need of genetic manipulation jeopardizes clinical applicability. This study aims at developing, testing and validating the first light-regulated drug with cardiac effects, in order to avoid the requirement of genetic manipulation offered by optogenetic methods. A M2 muscarinic acetylcholine receptors (mAChRs) light-regulated drug (PAI) was designed, synthesized and pharmacologically characterized. The design was based on the orthosteric mAChRs agonist Iperoxo, an allosteric M2 ligand, and a photoswitchable azobenzene linker. PAI can be reversibly photoisomerized between <i>cis</i> and <i>trans</i> configurations under ultraviolet (UV) and visible light, respectively, and it reversibly photoswitches the activity of M2 muscarinic acetylcholine receptors. We have evaluated <i>in vitro</i> photoresponses using a calcium imaging assay in genetically unmodified receptors overexpressed in mammalian cells. Furthermore, using this new chemical tool, we demonstrate for the first time photoregulation of cardiac function <i>in vivo</i> in wildtype frog tadpoles and in rats with a method that does not require genetic manipulation. Such a new approach may enable enhanced spatial and temporal selectivity for cardiovascular drugs.</p>


1992 ◽  
Vol 12 (4) ◽  
pp. 562-570 ◽  
Author(s):  
Hans W. Müller-Gärtner ◽  
Alan A. Wilson ◽  
Robert F. Dannals ◽  
Henry N. Wagner ◽  
J. James Frost

A method to image muscarinic acetylcholine receptors (muscarinic receptors) noninvasively in human brain in vivo was developed using [123I]4-iododexetimide ([123I]IDex), [123I]4-iodolevetimide ([123I]ILev), and single photon emission computed tomography (SPECT). [123I]IDex is a high-affinity muscarinic receptor antagonist. [123I]ILev is its pharmacologically inactive enantiomer and measures nonspecific binding of [123I]IDex in vitro. Regional brain activity after tracer injection was measured in four young normal volunteers for 24 h. Regional [123I]IDex and [123I]ILev activities were correlated early after injection, but not after 1.5 h. [123I]IDex activity increased over 7–12 h in neocortex, neostriatum, and thalamus, but decreased immediately after the injection peak in cerebellum. [123I]IDex activity was highest in neostriatum, followed in rank order by neocortex, thalamus, and cerebellum. [123I]IDex activity correlated with muscarinic receptor concentrations in matching brain regions. In contrast, [123I]ILev activity decreased immediately after the injection peak in all brain regions and did not correspond to muscarinic receptor concentrations. [123I]IDex activity in neocortex and neostriatum during equilibrium was six to seven times higher than [123I]ILev activity. The data demonstrate that [123I]IDex binds specifically to muscarinic receptors in vivo, whereas [123I]ILev represents the nonspecific part of [123I]IDex binding. Subtraction of [123I]ILev from [123I]IDex images on a pixel-by-pixel basis therefore reflects specific [123I]IDex binding to muscarinic receptors. Owing to its high specific binding, [123I]IDex has the potential to measure small changes in muscarinic receptor characteristics in vivo with SPECT. The use of stereoisomerism directly to measure nonspecific binding of [123I]IDex in vivo may reduce complexity in modeling approaches to muscarinic acetylcholine receptors in human brain.


2015 ◽  
Vol 113 (7) ◽  
pp. 2408-2419 ◽  
Author(s):  
J. Josh Lawrence ◽  
Heikki Haario ◽  
Emily F. Stone

Parvalbumin-positive basket cells (PV BCs) of the CA1 hippocampus are active participants in theta (5–12 Hz) and gamma (20–80 Hz) oscillations in vivo. When PV BCs are driven at these frequencies in vitro, inhibitory postsynaptic currents (IPSCs) in synaptically connected CA1 pyramidal cells exhibit paired-pulse depression (PPD) and multiple-pulse depression (MPD). Moreover, PV BCs express presynaptic muscarinic acetylcholine receptors (mAChRs) that may be activated by synaptically released acetylcholine during learning behaviors in vivo. Using acute hippocampal slices from the CA1 hippocampus of juvenile PV-GFP mice, we performed whole cell recordings from synaptically connected PV BC-CA1 pyramidal cell pairs to investigate how bath application of 10 μM muscarine impacts PPD and MPD at CA1 PV BC-pyramidal cell synapses. In accordance with previous studies, PPD and MPD magnitude increased with stimulation frequency. mAChR activation reduced IPSC amplitude and transiently reduced PPD, but MPD was largely maintained. Consistent with a reduction in release probability ( pr), MPD and mAChR activation increased both the coefficient of variation of IPSC amplitudes and the fraction of failures. Using variance-mean analysis, we converted MPD trains to pr functions and developed a kinetic model that optimally fit six distinct pr conditions. The model revealed that vesicular depletion caused MPD and that recovery from depression was dependent on calcium. mAChR activation reduced the presynaptic calcium transient fourfold and initial pr twofold, thereby reducing PPD. However, mAChR activation slowed calcium-dependent recovery from depression during sustained repetitive activity, thereby preserving MPD. Thus the activation of presynaptic mAChRs optimally protects PV BCs from vesicular depletion during short bursts of high-frequency activity.


2000 ◽  
Vol 43 (23) ◽  
pp. 4552-4562 ◽  
Author(s):  
Marc B. Skaddan ◽  
Michael R. Kilbourn ◽  
Scott E. Snyder ◽  
Phil S. Sherman ◽  
Tim J. Desmond ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document