scholarly journals Control of Cardiac Function in vivo with a Light-Regulated Drug

Author(s):  
Fabio Riefolo ◽  
Carlo Matera ◽  
Aida Garrido-Charles ◽  
Alexandre M. J. Gomila ◽  
Luca Agnetta ◽  
...  

<p>Remote control of physiological functions with light offers the promise of unveiling their complex spatiotemporal dynamics in vivo, and enabling highly focalized therapeutic interventions with reduced systemic toxicity. Optogenetic methods have been implemented in the heart, but the need of genetic manipulation jeopardizes clinical applicability. This study aims at developing, testing and validating the first light-regulated drug with cardiac effects, in order to avoid the requirement of genetic manipulation offered by optogenetic methods. A M2 muscarinic acetylcholine receptors (mAChRs) light-regulated drug (PAI) was designed, synthesized and pharmacologically characterized. The design was based on the orthosteric mAChRs agonist Iperoxo, an allosteric M2 ligand, and a photoswitchable azobenzene linker. PAI can be reversibly photoisomerized between <i>cis</i> and <i>trans</i> configurations under ultraviolet (UV) and visible light, respectively, and it reversibly photoswitches the activity of M2 muscarinic acetylcholine receptors. We have evaluated <i>in vitro</i> photoresponses using a calcium imaging assay in genetically unmodified receptors overexpressed in mammalian cells. Furthermore, using this new chemical tool, we demonstrate for the first time photoregulation of cardiac function <i>in vivo</i> in wildtype frog tadpoles and in rats with a method that does not require genetic manipulation. Such a new approach may enable enhanced spatial and temporal selectivity for cardiovascular drugs.</p>

2019 ◽  
Author(s):  
Fabio Riefolo ◽  
Carlo Matera ◽  
Aida Garrido-Charles ◽  
Alexandre M. J. Gomila ◽  
Luca Agnetta ◽  
...  

<p>Remote control of physiological functions with light offers the promise of unveiling their complex spatiotemporal dynamics in vivo, and enabling highly focalized therapeutic interventions with reduced systemic toxicity. Optogenetic methods have been implemented in the heart, but the need of genetic manipulation jeopardizes clinical applicability. This study aims at developing, testing and validating the first light-regulated drug with cardiac effects, in order to avoid the requirement of genetic manipulation offered by optogenetic methods. A M2 muscarinic acetylcholine receptors (mAChRs) light-regulated drug (PAI) was designed, synthesized and pharmacologically characterized. The design was based on the orthosteric mAChRs agonist Iperoxo, an allosteric M2 ligand, and a photoswitchable azobenzene linker. PAI can be reversibly photoisomerized between <i>cis</i> and <i>trans</i> configurations under ultraviolet (UV) and visible light, respectively, and it reversibly photoswitches the activity of M2 muscarinic acetylcholine receptors. We have evaluated <i>in vitro</i> photoresponses using a calcium imaging assay in genetically unmodified receptors overexpressed in mammalian cells. Furthermore, using this new chemical tool, we demonstrate for the first time photoregulation of cardiac function <i>in vivo</i> in wildtype frog tadpoles and in rats with a method that does not require genetic manipulation. Such a new approach may enable enhanced spatial and temporal selectivity for cardiovascular drugs.</p>


2019 ◽  
Author(s):  
Fabio Riefolo ◽  
Carlo Matera ◽  
Aida Garrido-Charles ◽  
Alexandre M. J. Gomila ◽  
Luca Agnetta ◽  
...  

<p>Remote control of physiological functions with light offers the promise of unveiling their complex spatiotemporal dynamics in vivo, and enabling highly focalized therapeutic interventions with reduced systemic toxicity. Optogenetic methods have been implemented in the heart, but the need of genetic manipulation jeopardizes clinical applicability. This study aims at developing, testing and validating the first light-regulated drug with cardiac effects, in order to avoid the requirement of genetic manipulation offered by optogenetic methods. A M2 muscarinic acetylcholine receptors (mAChRs) light-regulated drug (PAI) was designed, synthesized and pharmacologically characterized. The design was based on the orthosteric mAChRs agonist Iperoxo, an allosteric M2 ligand, and a photoswitchable azobenzene linker. PAI can be reversibly photoisomerized between <i>cis</i> and <i>trans</i> configurations under ultraviolet (UV) and visible light, respectively, and it reversibly photoswitches the activity of M2 muscarinic acetylcholine receptors. We have evaluated <i>in vitro</i> photoresponses using a calcium imaging assay in genetically unmodified receptors overexpressed in mammalian cells. Furthermore, using this new chemical tool, we demonstrate for the first time photoregulation of cardiac function <i>in vivo</i> in wildtype frog tadpoles and in rats with a method that does not require genetic manipulation. Such a new approach may enable enhanced spatial and temporal selectivity for cardiovascular drugs.</p>


2008 ◽  
Vol 41 (9) ◽  
pp. 796-803 ◽  
Author(s):  
K. Peraza-Cruces ◽  
L. Gutiérrez-Guédez ◽  
D. Castañeda Perozo ◽  
C.R. Lankford ◽  
C. Rodríguez-Bonfante ◽  
...  

1992 ◽  
Vol 12 (4) ◽  
pp. 562-570 ◽  
Author(s):  
Hans W. Müller-Gärtner ◽  
Alan A. Wilson ◽  
Robert F. Dannals ◽  
Henry N. Wagner ◽  
J. James Frost

A method to image muscarinic acetylcholine receptors (muscarinic receptors) noninvasively in human brain in vivo was developed using [123I]4-iododexetimide ([123I]IDex), [123I]4-iodolevetimide ([123I]ILev), and single photon emission computed tomography (SPECT). [123I]IDex is a high-affinity muscarinic receptor antagonist. [123I]ILev is its pharmacologically inactive enantiomer and measures nonspecific binding of [123I]IDex in vitro. Regional brain activity after tracer injection was measured in four young normal volunteers for 24 h. Regional [123I]IDex and [123I]ILev activities were correlated early after injection, but not after 1.5 h. [123I]IDex activity increased over 7–12 h in neocortex, neostriatum, and thalamus, but decreased immediately after the injection peak in cerebellum. [123I]IDex activity was highest in neostriatum, followed in rank order by neocortex, thalamus, and cerebellum. [123I]IDex activity correlated with muscarinic receptor concentrations in matching brain regions. In contrast, [123I]ILev activity decreased immediately after the injection peak in all brain regions and did not correspond to muscarinic receptor concentrations. [123I]IDex activity in neocortex and neostriatum during equilibrium was six to seven times higher than [123I]ILev activity. The data demonstrate that [123I]IDex binds specifically to muscarinic receptors in vivo, whereas [123I]ILev represents the nonspecific part of [123I]IDex binding. Subtraction of [123I]ILev from [123I]IDex images on a pixel-by-pixel basis therefore reflects specific [123I]IDex binding to muscarinic receptors. Owing to its high specific binding, [123I]IDex has the potential to measure small changes in muscarinic receptor characteristics in vivo with SPECT. The use of stereoisomerism directly to measure nonspecific binding of [123I]IDex in vivo may reduce complexity in modeling approaches to muscarinic acetylcholine receptors in human brain.


2015 ◽  
Vol 113 (7) ◽  
pp. 2408-2419 ◽  
Author(s):  
J. Josh Lawrence ◽  
Heikki Haario ◽  
Emily F. Stone

Parvalbumin-positive basket cells (PV BCs) of the CA1 hippocampus are active participants in theta (5–12 Hz) and gamma (20–80 Hz) oscillations in vivo. When PV BCs are driven at these frequencies in vitro, inhibitory postsynaptic currents (IPSCs) in synaptically connected CA1 pyramidal cells exhibit paired-pulse depression (PPD) and multiple-pulse depression (MPD). Moreover, PV BCs express presynaptic muscarinic acetylcholine receptors (mAChRs) that may be activated by synaptically released acetylcholine during learning behaviors in vivo. Using acute hippocampal slices from the CA1 hippocampus of juvenile PV-GFP mice, we performed whole cell recordings from synaptically connected PV BC-CA1 pyramidal cell pairs to investigate how bath application of 10 μM muscarine impacts PPD and MPD at CA1 PV BC-pyramidal cell synapses. In accordance with previous studies, PPD and MPD magnitude increased with stimulation frequency. mAChR activation reduced IPSC amplitude and transiently reduced PPD, but MPD was largely maintained. Consistent with a reduction in release probability ( pr), MPD and mAChR activation increased both the coefficient of variation of IPSC amplitudes and the fraction of failures. Using variance-mean analysis, we converted MPD trains to pr functions and developed a kinetic model that optimally fit six distinct pr conditions. The model revealed that vesicular depletion caused MPD and that recovery from depression was dependent on calcium. mAChR activation reduced the presynaptic calcium transient fourfold and initial pr twofold, thereby reducing PPD. However, mAChR activation slowed calcium-dependent recovery from depression during sustained repetitive activity, thereby preserving MPD. Thus the activation of presynaptic mAChRs optimally protects PV BCs from vesicular depletion during short bursts of high-frequency activity.


2000 ◽  
Vol 43 (23) ◽  
pp. 4552-4562 ◽  
Author(s):  
Marc B. Skaddan ◽  
Michael R. Kilbourn ◽  
Scott E. Snyder ◽  
Phil S. Sherman ◽  
Tim J. Desmond ◽  
...  

2019 ◽  
Vol 14 (2) ◽  
pp. 91-100 ◽  
Author(s):  
María E. Sales ◽  
Alejandro J. Español ◽  
Agustina R. Salem ◽  
Paola M. Pulido ◽  
Y. Sanchez ◽  
...  

Background: muscarinic acetylcholine receptors (mAChRs) have attracted interest as targets for therapeutic interventions in different illnesses like Alzheimer´s disease, viral infections and different tumors. Regarding the latter, many authors have studied each subtype of mAChRs, which seem to be involved in the progression of distinct types of malignancies. Methods: We carefully revised research literature focused on mAChRs expression and signaling as well as in their involvement in cancer progression and treatment. The characteristics of screened papers were described using the mentioned conceptual framework. Results: Muscarinic antagonists and agonists have been assayed for the treatment of tumors established in lung, brain and breast with beneficial effects. We described an up-regulation of mAChRs in mammary tumors and the lack of expression in non-tumorigenic breast cells and normal mammary tissues. We and others demonstrated that muscarinic agonists can trigger anti-tumor actions in a dose-dependent manner on tumors originated in different organs like brain or breast. At pharmacological concentrations, they exert similar effects to traditional chemotherapeutic agents. Metronomic chemotherapy refers to the administration of anti-cancer drugs at low doses with short intervals among them, and it is a different regimen applied in cancer treatment reducing malignant growth and angiogenesis, and very low incidence of adverse effects. Conclusion: The usage of subthreshold concentrations of muscarinic agonists combined with conventional chemotherapeutic agents could be a promising tool for breast cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document