scholarly journals Design, synthesis and in vitro and in vivo antitumour activity of 3-benzylideneindolin-2-one derivatives, a novel class of small-molecule inhibitors of the MDM2–p53 interaction

2014 ◽  
Vol 81 ◽  
pp. 277-288 ◽  
Author(s):  
Guang-hui Zheng ◽  
Jia-jia Shen ◽  
Yue-chen Zhan ◽  
Hong Yi ◽  
Si-tu Xue ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 306-306
Author(s):  
Meredith W. Miller ◽  
Soni Basra ◽  
Paul C. Billings ◽  
Jamie Gewirtz ◽  
William F. DeGrado ◽  
...  

Abstract Vascular damage due to trauma or disease exposes circulating platelets to collagen in the subendothelial matrix. This is a critical event in the formation of a hemostatic plug or an occluding thrombus because collagen is not only a substrate for platelet adhesion but is also a strong platelet agonist. Platelets possess two physiologic collagen receptors: glycoprotein VI, a member of the immunoglobin superfamily, and the integrin α2β1. To design small molecule inhibitors of the interaction of platelets with collagen, we focused on α2β1 as a target because murine models of α2β1 deficiency display normal bleeding times and only a slight decrease in platelet activation by collagen and because the small number of reported patients with congenital α2β1 deficiency demonstrated only a mild bleeding diathesis. Thus, α2β1 antagonists could be effective anti-thrombotic agents with minimal toxicity, especially when combined with other anti-platelet drugs. We have developed a class of compounds that target the I-like domain of the β1 subunit, an allosteric site that regulates collagen binding to α2β1 by preventing the conversion of α2β1 from an inactive (low affinity) to an active (high affinity) conformation. This class of compounds is based on a proline-substituted 2,3-diaminopropionic acid scaffold. Structure-activity relationship studies of the scaffold have focused on optimization of the proline moiety, the urea functionality, and the sulfonyl group and have resulted in the development of potent inhibitors of α2β1-mediated platelet adhesion to collagen with IC50’s in the high picomolar to low nanomolar range. In particular, optimization of the proline moiety lead to compounds with high potency: transitioning from proline (DB496, IC50 of 29–62 nM) to a thiazolidine (SB68A) improved the IC50 to 2–8 nM; adding a methyl group at the 2 position of the thiazolidine (SB68B) slightly improved the IC50 to 1–12 nM; adding two methyl groups at the 5 position of the thiazolidine (SW4-161) resulted in a lead compound with an IC50 of 0.33–8 nM. As expected, the compounds had no effect on the binding of isolated α2 I-domains to collagen, consistent with their I-like domain mode of activity. Further, they were specific for α2β1-mediated platelet adhesion to collagen because they had no impact on ADP-stimulated platelet aggregation when added at 2 μM, a concentration more than 100-fold greater than the IC50 for inhibition of platelet adhesion to collagen. The compounds were also strong inhibitors of murine platelet adhesion to collagen and when tested in the ferric chloride-initiated murine carotid artery injury model, displayed activity similar to aspirin. Thus, 71% of untreated mice in this thrombosis model developed occlusive thrombi that remained stable for the 30 min duration of the assay, whereas stable thrombi developed in only 32% of mice treated with 1g/kg aspirin orally and in 41% of mice receiving 60 mg/kg CSW4-161intravenously. In summary, we have developed a class of potent inhibitors of the integrin α2β1 that demonstrate both in vitro and in vivo anti-platelet activity. Further development of this class of compounds may result in novel and relatively non-toxic anti-thrombotic agents.


2011 ◽  
Vol 300 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Pramod P. Mehta ◽  
Pei-Pei Kung ◽  
Shinji Yamazaki ◽  
Marlena Walls ◽  
Andrea Shen ◽  
...  

Neoplasia ◽  
2010 ◽  
Vol 12 (4) ◽  
pp. 326-IN6 ◽  
Author(s):  
Rajesh Kumar Gandhirajan ◽  
Peter Anton Staib ◽  
Katharina Minke ◽  
Iris Gehrke ◽  
Günther Plickert ◽  
...  

2018 ◽  
Vol 2 (6) ◽  
pp. 597-606 ◽  
Author(s):  
Danuta Jarocha ◽  
Karen K. Vo ◽  
Randolph B. Lyde ◽  
Vincent Hayes ◽  
Rodney M. Camire ◽  
...  

Key PointsDrugs shown to enhance megakaryocyte ploidy and size variably effect terminal injury and apoptosis of in vitro–grown megakaryocytes. The number of functional platelets released in vivo from infused megakaryocytes can be enhanced by these drug treatments.


2007 ◽  
Vol 12 (7) ◽  
pp. 983-993 ◽  
Author(s):  
Surya P. Manandhar ◽  
Emily R. Hildebrandt ◽  
Walter K. Schmidt

The Rce1p protease is required for the maturation of the Ras GTPase and certain other isoprenylated proteins and is considered a chemotherapeutic target. To identify new small-molecule inhibitors of Rce1p, the authors screened the National Cancer Institute Diversity Set compound library using in vitro assays to monitor the proteolytic processing of peptides derived from Ras and the yeast a-factor mating pheromone. Of 46 inhibitors initially identified with a Ras-based assay, only 9 were effective in the pheromone-based assay. The IC50 values of these 9 compounds were in the low micromolar range for both yeast (6-35 µM) and human Rce1p (0.4-46 µM). Four compounds were somewhat Rce1p selective in that they partially inhibited the Ste24p protease and did not inhibit Ste14p isoprenylcysteine carboxyl methyltransferase, 2 enzymes also involved in the maturation of isoprenylated proteins. The remaining 5 compounds inhibited all 3 enzymes. The 2 most Rce1p-selective agents were ineffective trypsin inhibitors, further supporting the specificity of these agents for Rce1p. The 5 least specific compounds formed colloidal aggregates, a proposed common feature of promiscuous inhibitors. Interestingly, the most specific Rce1p inhibitor also formed a colloidal aggregate. In vivo studies revealed that treatment of wild-type yeast with 1 compound induced a Ras2p delocalization phenotype that mimics observed effects in rce1 ste24 null yeast. The 9 compounds identified in this study represent new tools for understanding the enzymology of postisoprenylation-modifying enzymes and provide new insight for the future development of Rce1p inhibitors. ( Journal of Biomolecular Screening 2007:983-993)


2009 ◽  
Vol 69 (12) ◽  
pp. 5073-5081 ◽  
Author(s):  
Sylvestor A. Moses ◽  
M. Ahad Ali ◽  
Song Zuohe ◽  
Lei Du-Cuny ◽  
Li Li Zhou ◽  
...  

2012 ◽  
Vol 17 (4) ◽  
pp. 421-434 ◽  
Author(s):  
Dana Ungermannova ◽  
Seth J. Parker ◽  
Christopher G. Nasveschuk ◽  
Douglas A. Chapnick ◽  
Andrew J. Phillips ◽  
...  

Protein degradation via the ubiquitin-proteasome pathway is important for a diverse number of cellular processes ranging from cell signaling to development. Disruption of the ubiquitin pathway occurs in a variety of human diseases, including several cancers and neurological disorders. Excessive proteolysis of tumor suppressor proteins, such as p27, occurs in numerous aggressive human tumors. To discover small-molecule inhibitors that potentially prevent p27 degradation, we developed a series of screening assays, including a cell-based screen of a small-molecule compound library and two novel nucleotide exchange assays. Several small-molecule inhibitors, including NSC624206, were identified and subsequently verified to prevent p27 ubiquitination in vitro. The mechanism of NSC624206 inhibition of p27 ubiquitination was further unraveled using the nucleotide exchange assays and shown to be due to antagonizing ubiquitin activating enzyme (E1). We determined that NSC624206 and PYR-41, a recently reported inhibitor of ubiquitin E1, specifically block ubiquitin-thioester formation but have no effect on ubiquitin adenylation. These studies reveal a novel E1 inhibitor that targets a specific step of the E1 activation reaction. NSC624206 could, therefore, be potentially useful for the control of excessive ubiquitin-mediated proteolysis in vivo.


Sign in / Sign up

Export Citation Format

Share Document