Pharmacokinetics of an immediate release, a controlled release and a two pulse dosage form in dogs

2005 ◽  
Vol 60 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Raimar Löbenberg ◽  
Jae Seung Kim ◽  
Gordon L. Amidon
2020 ◽  
Vol 14 (4) ◽  
pp. 351-359
Author(s):  
Shubham Shrestha ◽  
Sankha Bhattacharya

Drug delivery for a long time has been a major problem in the pharmaceutical field. The development of a new Nano-carrier system called nanosponge has shown the potential to solve the problem. Nanosponge has a porous structure and can entrap the drug in it. It can carry both hydrophilic and hydrophobic drugs. They also provide controlled release of the drugs and can also protect various substances from degradation. Nanosponge can increase the solubility of drugs and can also be formulated into an oral, topical and parenteral dosage form. The current review explores different preparation techniques, characterization parameters, as well as various applications of nanosponge. Various patents related to nanosponge drug delivery system have been discussed in this study.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 816
Author(s):  
Yuxuan Ge ◽  
Zhenhua Hu ◽  
Jili Chen ◽  
Yujie Qin ◽  
Fei Wu ◽  
...  

GLP-1 receptor agonists are a class of diabetes medicines offering self-regulating glycemic efficacy and may best be administrated in long-acting forms. Among GLP-1 receptor agonists, exenatide is the one requiring the least dose so that controlled-release poly(d, l-lactic-co-glycolic acid) (PLGA) microspheres may best achieve this purpose. Based on this consideration, the present study extended the injection interval of exenatide microspheres from one week of the current dosage form to four weeks by simply blending Mg(OH)2 powder within the matrix of PLGA microspheres. Mg(OH)2 served as the diffusion channel creator in the earlier stage of the controlled-release period and the decelerator of the self-catalyzed degradation of PLGA (by the formed lactic and glycolic acids) in the later stage due to its pH-responsive solubility. As a result, exenatide gradually diffused from the microspheres through Mg(OH)2-created diffusion channels before degradation of the PLGA matrix, followed by a mild release due to Mg(OH)2-buffered degradation of the polymer skeleton. In addition, an extruding–settling process comprising squeezing the PLGA solution through a porous glass membrane and sedimentation-aided solidification of the PLGA droplets was used to prepare the microspheres to ensure narrow size distribution and 95% encapsulation efficiency in an aqueous continuous phase. A pharmacokinetic study using rhesus monkey model confirmed the above formulation design by showing a steady blood concentration profile of exenatide with reduced CMAX and dosage form index. Mg·(OH)2


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


1997 ◽  
Vol 37 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Gilbert Block ◽  
Charles Liss ◽  
Scott Reines ◽  
Joseph Irr ◽  
Donald Nibbelink

2021 ◽  
Vol 11 ◽  
Author(s):  
Hardik Rana ◽  
Rushikesh Chaudhari ◽  
Vaishali Thakkar ◽  
Tejal Gandhi

Background: The better control of the drug release with immediate effect is the major concern to achieve better therapeutic action and patient compliance. The failure of the solid dispersion complex during storage as well as in-vivo is another concern for the oral solid dosage form. Objective: The prime objective of the present study was to optimize the biphasic minitablet incorporating quality by design approach using the combination of waxy erodible and water-impermeable excipients. Exploration of Soluplus as a precipitation inhibitor and Dexolve as a solubility enhancer in oral solid dosage form was the secondary objective. Methods: The drug-Excipient compatibility study was assessed by FTIR. Clozapine was chosen as a model drug that has poor aqueous solubility. The complex was formulated using B-cyclodextrin or HP B-CD or Dexolve by kneading method. The screening of solubility enhancers and their amount were performed based on phase solubility study. The precipitation inhibitor was screened as per the parachute effect study. Immediate release minitablets were formulated using a direct compression method using different disintegrating agents. The IR minitablets were evaluated for different evaluation parameters. The sustained release minitablets was formulated by hot-melt granulation technique incorporating the Precirol ATO 5 as a waxy excipient and ethyl cellulose as water impermeable excipient. The SR minitablet was optimized using a central composite design. The amount of Precirol ATO 5 and ethyl cellulose were chosen as independent variables and % drug release at 1, 6, and 10 h was selected as responses. The designed batches were evaluated for different pre and post compressional parameters. The IR and SR minitablets were filled in a capsule as per dose requirement and evaluated for in-vitro drug release. The in-vivo plasma concentration was predicted using the Back calculation of the Wagner – Nelson approach. Results: Drug – Excipient study revealed that no significant interaction was observed. Dexolve was screened as a solubility enhancer for the improvement of the solubility of clozapine. The Soluplus was chosen as a precipitation inhibitor from the parachute effect study. The immediate-release tablet was formulated using Prosolv EASYtab SP yield less disintegration time with better flowability. The sustained release mini-tablet was formulated using Precirol ATO 5 and ethyl cellulose. Two-dimensional and three-dimensional plots were revealed the significant effect of the amount of Precirol ATO 5 and ethyl cellulose. The overlay plot locates the optimized region. The in-vitro drug release study revealed the desired drug release of the final combined formulation. The in-vivo plasma concentration-time confirms the drug release up to 12h. Conclusion: The biphasic mini-tablets were formulated successfully for better control of drug release leads to high patient compliance. The use of soluplus as a precipitation inhibitor is explored in the oral solid dosage form for a poorly aqueous drug. Prosolv EASYtab SP was incorporated in the formulation as super disintegrant. The amount of Precirol ATO 5 and ethyl cellulose had a significant effect on drug release in sustained-release minitablet. The approach can be useful in the industry.


Author(s):  
Mahesh Hari Kolhe ◽  
Ritu Mehra Gilhotra ◽  
Govind Sarangdhar Asane

Atenolol is beta blocker absorbed through GIT use for heart diseases. Single tablets, floating tablets and sustained released formulations studied are insufficient to produce effective dose to enhance bioavailability and effectiveness. Our study is focused on development of capsule dosage form containing immediate release (IR) and floating extended release (ER) tablets for monitoring release of atenolol in single dosage form. Two different tablets for IR and ER were prepared in three different combinations (Batch). Pre-formulation and post formulation parameters found to be within acceptable limits of formulation. Release behavior of individual tablets and capsule containing two tablets were studied. Among the batches, capsules containing smaller amount of atenolol in IR and large amount of Atenolol in ER (batch II) showed impressive drug release pattern. This formulation was stable even after a month and achieved optimum release behavior of immediate release and sustained release. This study could be used for effective treatment for different heart complications and reduce toxicity due to high plasma concentration in increased dose frequency.


Sign in / Sign up

Export Citation Format

Share Document