Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data

2014 ◽  
Vol 87 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Slavomira Doktorovova ◽  
Eliana B. Souto ◽  
Amélia M. Silva
2021 ◽  
Vol 14 (8) ◽  
pp. 711
Author(s):  
Cláudia Pina Costa ◽  
Sandra Barreiro ◽  
João Nuno Moreira ◽  
Renata Silva ◽  
Hugo Almeida ◽  
...  

The nasal route has been used for many years for the local treatment of nasal diseases. More recently, this route has been gaining momentum, due to the possibility of targeting the central nervous system (CNS) from the nasal cavity, avoiding the blood−brain barrier (BBB). In this area, the use of lipid nanoparticles, such as nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN), in nasal formulations has shown promising outcomes on a wide array of indications such as brain diseases, including epilepsy, multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and gliomas. Herein, the state of the art of the most recent literature available on in vitro studies with nasal formulations of lipid nanoparticles is discussed. Specific in vitro cell culture models are needed to assess the cytotoxicity of nasal formulations and to explore the underlying mechanism(s) of drug transport and absorption across the nasal mucosa. In addition, different studies with 3D nasal casts are reported, showing their ability to predict the drug deposition in the nasal cavity and evaluating the factors that interfere in this process, such as nasal cavity area, type of administration device and angle of application, inspiratory flow, presence of mucoadhesive agents, among others. Notwithstanding, they do not preclude the use of confirmatory in vivo studies, a significant impact on the 3R (replacement, reduction and refinement) principle within the scope of animal experiments is expected. The use of 3D nasal casts to test nasal formulations of lipid nanoparticles is still totally unexplored, to the authors best knowledge, thus constituting a wide open field of research.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 66-75
Author(s):  
Kumara Swamy Samanthula ◽  
Ramesh Alli ◽  
Thirupathi Gorre

Ropinirole (RP), is a selective dopamine agonist that is used alone or with other medications to treat the symptoms of Parkinson’s disease (PD). RP has low bioavailability of only about 50% due to the first-pass metabolism, and it requires frequent dosing during oral administration. The objective of the current research was to develop RP loaded solid lipid nanoparticles (RP-SLNs), nanostructured lipid carriers (RP-NLCs), and their corresponding hydrogels (RP-SLN-C and RP-NLC-C) that might improve efficacy in PD treatment. RP nanoparticles were prepared by homogenization aided probe sonication method and optimized based on particle size, polydispersity index (PDI), zeta potential (ZP), assay, entrapment efficiency, and in vitro release studies. Optimized formulations were converted to hydrogel formulations using Carbopol 934 as a gelling polymer and optimized based on rheological and release characteristics. Optimized formulations were further evaluated using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), freeze-drying, and stability study at refrigerated and room temperatures. The optimized RP-SLN formulation showed particle size and entrapment efficiency of 213.5±3.8 nm and 77.9±3.1% compared to 190.6±3.7 nm and 85.7±1.7% for optimized RP-NLC formulation. PXRD supplemented and confirmed DSC results, RP was entrapped in a molecularly dispersed state inside the core of the lipid nanocarrier. Furthermore, RP loaded lipid nanocarriers revealed a spherical shape in SEM images. In vitro release studies demonstrated sustained release profiles for RP from SLNs, NLCs, and their hydrogels over 24 h and were stable over three months at 4ºC and 25ºC storage conditions. Keywords: Parkinson’s disease, Ropinirole, Solid lipid nanoparticles, Nanostructured lipid carriers, Hydrogel.


Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


Sign in / Sign up

Export Citation Format

Share Document