scholarly journals Portal infusion of escitalopram enhances hepatic glucose disposal in conscious dogs

2009 ◽  
Vol 607 (1-3) ◽  
pp. 251-257 ◽  
Author(s):  
Zhibo An ◽  
Mary C. Moore ◽  
Jason J. Winnick ◽  
Ben Farmer ◽  
Doss W. Neal ◽  
...  
2003 ◽  
Vol 284 (5) ◽  
pp. E1027-E1036 ◽  
Author(s):  
Makoto Nishizawa ◽  
Mary Courtney Moore ◽  
Masakazu Shiota ◽  
Stephanie M. Gustavson ◽  
Wanda L. Snead ◽  
...  

Arteriovenous difference and tracer ([3-3H]glucose) techniques were used in 42-h-fasted conscious dogs to identify any insulin-like effects of intraportally administered glucagon-like peptide 1-(7–36)amide (GLP-1). Each study consisted of an equilibration, a basal, and three 90-min test periods (P1, P2, and P3) during which somatostatin, intraportal insulin (3-fold basal) and glucagon (basal), and peripheral glucose were infused. Saline was infused intraportally in P1. During P2 and P3, GLP-1 was infused intraportally at 0.9 and 5.1 pmol · kg−1 · min−1in eight dogs, at 10 and 20 pmol · kg−1 · min−1in seven dogs, and at 0 pmol · kg−1 · min−1in eight dogs (control group). Net hepatic glucose uptake was significantly enhanced during GLP-1 infusion at 20 pmol · kg−1 · min−1[21.8 vs. 13.4 μmol · kg−1 · min−1(control), P < 0.05]. Glucose utilization was significantly increased during infusion at 10 and 20 pmol · kg−1 · min−1[87.3 ± 8.3 and 105.3 ± 12.8, respectively, vs. 62.2 ± 5.3 and 74.7 ± 7.4 μmol · kg−1 · min−1(control), P < 0.05]. The glucose infusion rate required to maintain hyperglycemia was increased ( P < 0.05) during infusion of GLP-1 at 5.1, 10, and 20 pmol · kg−1 · min−1(22, 36, and 32%, respectively, greater than control). Nonhepatic glucose uptake increased significantly during delivery of GLP-1 at 5.1 and 10 pmol · kg−1 · min−1(25 and 46% greater than control) and tended ( P = 0.1) to increase during GLP-1 infusion at 20 pmol · kg−1 · min−1(24% greater than control). Intraportal infusion of GLP-1 at high physiological and pharmacological rates increased glucose disposal primarily in nonhepatic tissues.


1993 ◽  
Vol 264 (1) ◽  
pp. E1-E10 ◽  
Author(s):  
L. Rossetti ◽  
S. Farrace ◽  
S. B. Choi ◽  
A. Giaccari ◽  
L. Sloan ◽  
...  

Calcitonin gene-related peptide (CGRP) is a neuropeptide that is released at the neuromuscular junction in response to nerve excitation. To examine the relationship between plasma CGRP concentration and intracellular glucose metabolism in conscious rats, we performed insulin (22 pmol.kg-1.min-1) clamp studies combined with the infusion of 0, 20, 50, 100, 200, and 500 pmol.kg-1.min-1 CGRP (plasma concentrations ranging from 2 x 10(-11) to 5 x 10(-9) M). CGRP antagonized insulin's suppression of hepatic glucose production at plasma concentrations (approximately 10(-10) M) that are only two- to fivefold its basal portal concentration. Insulin-mediated glucose disposal was decreased by 20-32% when CGRP was infused at 50 pmol.kg-1.min-1 (plasma concentration 3 x 10(-10) M) or more. The impairment in insulin-stimulated glycogen synthesis in skeletal muscle accounted for all of the CGRP-induced decrease in glucose disposal, while whole body glycolysis was increased despite the reduction in total glucose uptake. The muscle glucose 6-phosphate concentration progressively increased during the CGRP infusions. CGRP inhibited insulin-stimulated glycogen synthase in skeletal muscle with a 50% effective dose of 1.9 +/- 0.36 x 10(-10) M. This effect on glycogen synthase was due to a reduction in enzyme affinity for UDP-glucose, with no changes in the maximal velocity. In vitro CGRP stimulated both hepatic and skeletal muscle adenylate cyclase in a dose-dependent manner. These data suggest that 1) CGRP is a potent antagonist of insulin at the level of muscle glycogen synthesis and hepatic glucose production; 2) inhibition of glycogen synthase is its major biochemical action in skeletal muscle; and 3) these effects are present at concentrations of the peptide that may be in the physiological range for portal vein and skeletal muscle. These data underscore the potential role of CGRP in the physiological modulation of intracellular glucose metabolism.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
David Anthony Okar ◽  
W Ed Smith ◽  
Sara Langer ◽  
Simone Baltrusch

2003 ◽  
Vol 285 (2) ◽  
pp. E280-E286 ◽  
Author(s):  
Farhad Zangeneh ◽  
Rita Basu ◽  
Pankaj Shah ◽  
Puneet Arora ◽  
Michael Camilleri ◽  
...  

Portal infusion of glucose at rates approximating endogenous glucose production (EGP) causes paradoxical hypoglycemia in wild-type but not GLUT2 null mice, implying activation of a specific portal glucose sensor. To determine whether this occurs in humans, glucose containing [3-3H]glucose was infused intraduodenally at rates of 3.1 mg · kg-1 · min-1 ( n = 5), 1.55 mg · kg-1 · min-1 ( n = 9), or 0/0.1 mg · kg-1 · min-1 ( n = 9) for 7 h in healthy nondiabetic subjects. [6,6-2H2]glucose was infused intravenously to enable simultaneous measurement of EGP, glucose disappearance, and the rate of appearance of the intraduodenally infused glucose. Plasma glucose concentrations fell ( P < 0.01) from 90 ± 1 to 84 ± 2 mg/dl during the 0/0.1 mg · kg-1 · min-1 id infusions but increased ( P < 0.001) to 104 ± 5 and 107 ± 3 mg/dl, respectively, during the 1.55 and 3.1 mg · kg-1 · min-1 id infusions. In contrast, insulin increased ( P < 0.05) during the 1.55 and 3.0 mg · kg-1 · min-1 infusions, reaching a peak of 10 ± 2 and 18 ± 5 μU/ml, respectively, by 2 h. Insulin concentrations then fell back to concentrations that no longer differed by study end (7 ± 1 vs. 8 ± 1 μU/ml). This resulted in comparable suppression of EGP by study end (0.84 ± 0.2 and 0.63 ± 0.1 mg · kg-1 · min-1). Glucose disappearance was higher ( P < 0.01) during the final hour of the 3.1 than 1.55 mg · kg-1 · min-1 id infusion (4.47 ± 0.2 vs. 2.6 ± 0.1 mg · kg-1 · min-1), likely because of the slightly, but not significantly, higher glucose and insulin concentrations. We conclude that, in contrast to mice, selective portal glucose delivery at rates approximating EGP does not cause hypoglycemia in humans.


2000 ◽  
Vol 279 (2) ◽  
pp. E284-E292 ◽  
Author(s):  
Po-Shiuan Hsieh ◽  
Mary Courtney Moore ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The aim of this study was to determine whether the elimination of the hepatic arterial-portal (A-P) venous glucose gradient would alter the effects of portal glucose delivery on hepatic or peripheral glucose uptake. Three groups of 42-h-fasted conscious dogs ( n = 7/group) were studied. After a 40-min basal period, somatostatin was infused peripherally along with intraportal insulin (7.2 pmol·kg−1·min−1) and glucagon (0.65 ng·kg−1·min−1). In test period 1 (90 min), glucose was infused into a peripheral vein to double the hepatic glucose load (HGL) in all groups. In test period 2 (90 min) of the control group (CONT), saline was infused intraportally; in the other two groups, glucose was infused intraportally (22.2 μmol·kg−1·min−1). In the second group (PD), saline was simultaneously infused into the hepatic artery; in the third group (PD+HAD), glucose was infused into the hepatic artery to eliminate the negative hepatic A-P glucose gradient. HGL was twofold basal in each test period. Net hepatic glucose uptake (NHGU) was 10.1 ± 2.2 and 12.8 ± 2.1 vs. 11.5 ± 1.6 and 23.8 ± 3.3* vs. 9.0 ± 2.4 and 13.8 ± 4.2 μmol · kg−1·min−1 in the two periods of CONT, PD, and PD+HAD, respectively (*  P < 0.05 vs. same test period in PD and PD+HAD). NHGU was 28.9 ± 1.2 and 39.5 ± 4.3 vs. 26.3 ± 3.7 and 24.5 ± 3.7* vs. 36.1 ± 3.8 and 53.3 ± 8.5 μmol·kg−1·min−1 in the first and second periods of CONT, PD, and PD+HAD, respectively (*  P < 0.05 vs. same test period in PD and PD+HAD). Thus the increment in NHGU and decrement in extrahepatic glucose uptake caused by the portal signal were significantly reduced by hepatic arterial glucose infusion. These results suggest that the hepatic arterial glucose level plays an important role in generation of the effect of portal glucose delivery on glucose uptake by liver and muscle.


2008 ◽  
Vol 294 (4) ◽  
pp. R1197-R1204 ◽  
Author(s):  
Makoto Nishizawa ◽  
Masakazu Shiota ◽  
Mary Courtney Moore ◽  
Stephanie M. Gustavson ◽  
Doss W. Neal ◽  
...  

We examined whether intraportal delivery of neuropeptide Y (NPY) affects glucose metabolism in 42-h-fasted conscious dogs using arteriovenous difference methodology. The experimental period was divided into three subperiods (P1, P2, and P3). During all subperiods, the dogs received infusions of somatostatin, intraportal insulin (threefold basal), intraportal glucagon (basal), and peripheral intravenous glucose to increase the hepatic glucose load twofold basal. Following P1, in the NPY group ( n = 7), NPY was infused intraportally at 0.2 and 5.1 pmol·kg−1·min−1 during P2 and P3, respectively. The control group ( n = 7) received intraportal saline infusion without NPY. There were no significant changes in hepatic blood flow in NPY vs. control. The lower infusion rate of NPY (P2) did not enhance net hepatic glucose uptake. During P3, the increment in net hepatic glucose uptake (compared with P1) was 4 ± 1 and 10 ± 2 μmol·kg−1·min−1 in control and NPY, respectively ( P < 0.05). The increment in net hepatic fractional glucose extraction during P3 was 0.015 ± 0.005 and 0.039 ± 0.008 in control and NPY, respectively ( P < 0.05). Net hepatic carbon retention was enhanced in NPY vs. control (22 ± 2 vs. 14 ± 2 μmol·kg−1·min−1, P < 0.05). There were no significant differences between groups in the total glucose infusion rate. Thus, intraportal NPY stimulates net hepatic glucose uptake without significantly altering whole body glucose disposal in dogs.


Sign in / Sign up

Export Citation Format

Share Document