Comprehensive study of baicalin down-regulating NOD2 receptor expression of neurons with oxygen–glucose deprivation in vitro and cerebral ischemia-reperfusion in vivo

2010 ◽  
Vol 649 (1-3) ◽  
pp. 92-99 ◽  
Author(s):  
Huiying Li ◽  
Jun Hu ◽  
Li Ma ◽  
Zhiyi Yuan ◽  
Yugang Wang ◽  
...  
2020 ◽  
Author(s):  
Manhua Lv ◽  
Yongjia Jiang ◽  
Dayong Zhang ◽  
Dan Yao ◽  
Yuefeng Cheng ◽  
...  

Abstract Background: Microglial hyperactivation driven by SphK1/S1P signaling and consequent inflammatory mediator production is a key driver of cerebral ischemia-reperfusion injury (CIRI). While SphK1 reportedly controls autophagy and microglial activation, it remains uncertain as to whether it is similarly able to regulate damage mediated by CIRI-activated microglia. Methods: In the present study, we utilized both an in vitro oxygen-glucose deprivation reperfusion (OGDR) model and an in vivo rat model of focal CIRI to test whether Sphk1 and autophagy is expressed in microglia. Western blot analysis was used to estimate the autophagy protein level (LC3 and SQSTM ) at different time points after OGDR. To detect cytokine secretion in microglial supernatants in response to OGDR, we measured the concentration of IL-1β, IL-6 and TNF-α in the culture supernatants using an enzyme-linked immunosorbent assay (ELISA). To evaluate whether microglia subjected to OGDR exhibited neuronal injury, we used a commercially available terminal transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) kit and flow cytometry to detect apoptotic neurons.Results: We determined that in the context of CIRI, microglia upregulated SphK1 and induced autophagy, while inhibiting these changes by lentivirus targeting SphK1 significantly decreased expression of autophagy . Moreover, we determined that autophagic body formation was enhanced in cerebral tissues following I/R. We also explored the impact of SphK1-induced autophagy on microglial inflammatory cytokine production and associated neuronal apoptosis using an in vitro OGDR model system. At a mechanistic level, we found that SphK1 promotes autophagy via the tumor necrosis factor receptor-associated factor 2 (TRAF2) pathway. Conclusion: These results reveal a novel mechanism whereby SphK1-induced autophagy in microglia can contribute to the pathogenesis of CIRI, potentially highlighting novel avenues for future therapeutic intervention in IS patients.


Author(s):  
Jun Ling ◽  
Haijian Cai ◽  
Muya Lin ◽  
Shunli Qi ◽  
Jian Du ◽  
...  

Abstract It has been widely accepted that autophagic cell death exacerbates the progression of cerebral ischemia/reperfusion (I/R). Our previous study revealed that overexpression of reticulon protein 1-C (RTN1-C) is involved in cerebral I/R injury. However, the underlying mechanisms have not been studied intensively. This study was designed to evaluate the effect of RTN1-C on autophagy under cerebral I/R. Using an in vitro oxygen-glucose deprivation followed by reoxygenation and a transient middle cerebral artery occlusion model in rats, we found that the expression of RTN1-C protein was significantly upregulated. We also revealed that RTN1-C knockdown suppressed overactivated autophagy both in vivo and in vitro, as indicated by decreased expressions of autophagic proteins. The number of Beclin-1/propidium iodide-positive cells was significantly less in the LV-shRTN1-C group than in the LV-shNC group. In addition, rapamycin, an activator of autophagy, aggravated cerebral I/R injury. RTN1-C knockdown reduced brain infarct volume, improved neurological deficits, and attenuated cell vulnerability to cerebral I/R injury after rapamycin treatment. Taken together, our findings demonstrated that the modulation of autophagy from RTN1-C may play vital roles in cerebral I/R injury, providing a potential therapeutic treatment for ischemic brain injury.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2021 ◽  
Author(s):  
Weifeng Shan ◽  
Huifeng Ge ◽  
Bingquan Chen ◽  
Linger Huang ◽  
Shaojun Zhu ◽  
...  

Abstract MiR-499a-5p was significantly down-regulated in degenerative tissues and correlated with apoptosis. Nonetheless, the biological function of miR-499a-5p in acute ischemic stroke has been still unclear. In this study, we found the plasma levels of miR-499a-5p were significantly down-regulated in 64 ischemic stroke patients and negatively correlated with the National Institutes of Health Stroke Scale score. Then, we constructed cerebral ischemia/reperfusion (I/R) injury in rats after middle cerebral artery occlusion and subsequent reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R) treated SH-SY5Y cell model. Transfection with miR-499a-5p mimic was accomplished by intracerebroventricular injection in the in vivo I/R injury model. We further found miR-499a-5p overexpression decreased infarct volumes and cell apoptosis in the in vivo I/R stroke model using TTC and TUNEL staining. PDCD4 was a direct target of miR-499a-5p by luciferase report assay and western blotting. Knockdown of PDCD4 reduced the infarct damage and cortical neuron apoptosis caused by I/R injury. MiR-499a-5p exerted neuroprotective roles mainly through inhibiting PDCD4-mediated apoptosis by CCK-8 assay, LDH release assay and flow cytometry analysis. These findings suggest that miR-499a-5p might represent a novel target that regulates brain injury by inhibiting PDCD4-mediating apoptosis.


2007 ◽  
Vol 28 (4) ◽  
pp. 812-823 ◽  
Author(s):  
Richard Milner ◽  
Stephanie Hung ◽  
Xiaoyun Wang ◽  
Maria Spatz ◽  
Gregory J del Zoppo

During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen—glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jialin He ◽  
Jianyang Liu ◽  
Yan Huang ◽  
Xiangqi Tang ◽  
Han Xiao ◽  
...  

The mechanism of Golgi apparatus (GA) stress responses mediated by GOLPH3 has been widely studied in ischemic stroke, and the neuroprotection effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) against cerebral ischemia/reperfusion injury (IRI) has been preliminarily presented. However, the exact role of OM-MSCs in the GA stress response following cerebral IRI remains to be elucidated. In the present study, we used an oxygen-glucose deprivation/reoxygenation (OGD/R) model and reversible middle cerebral artery occlusion (MCAO) model to simulate cerebral IRI in vitro and in vivo. Our results showed that the level of GOLPH3 protein, reactive oxygen species (ROS), and Ca2+ was upregulated, SPCA1 level was downregulated, and GA fragmentation was increased in ischemic stroke models, and OM-MSC treatment clearly ameliorated these GA stress responses in vitro and in vivo. Subsequently, the knockdown of PEDF in OM-MSCs using PEDF-specific siRNA further demonstrated that secretion of PEDF in OM-MSCs protected OGD/R-treated N2a cells and MCAO rats from GA stress response. Additionally, rescue experiment using specific pathway inhibitors suggested that OM-MSCs could promote the phosphorylation of the PI3K/Akt/mTOR pathway, thereby mitigating OGD/R-induced GA stress response and excessive autophagy. In conclusion, OM-MSCs minimized the GA stress response following cerebral IRI, at least partially, through the PEDF-PI3K/Akt/mTOR pathway.


Sign in / Sign up

Export Citation Format

Share Document