The role of insulin–thyroid hormone interaction on β-adrenoceptor-mediated cardiac responses

2013 ◽  
Vol 718 (1-3) ◽  
pp. 533-543 ◽  
Author(s):  
Ebru Arioglu-Inan ◽  
Isil Ozakca ◽  
Gizem Kayki-Mutlu ◽  
Aylin Sepici-Dincel ◽  
Vecdi Melih Altan
1981 ◽  
Vol 97 (1) ◽  
pp. 91-97 ◽  
Author(s):  
H. Storm ◽  
C. van Hardeveld ◽  
A. A. H. Kassenaar

Abstract. Basal plasma levels for adrenalin (A), noradrenalin (NA), l-triiodothyronine (T3), and l-thyroxine (T4) were determined in rats with a chronically inserted catheter. The experiments described in this report were started 3 days after the surgical procedure when T3 and T4 levels had returned to normal. Basal levels for the catecholamines were reached already 4 h after the operation. The T3/T4 ratio in plasma was significantly increased after 3, 7, and 14 days in rats kept at 4°C and the same holds for the iodide in the 24-h urine after 7 and 14 days at 4°C. The venous NA plasma concentration was increased 6- to 12-fold during the same period of exposure to cold, whereas the A concentration remained at the basal level. During infusion of NA at 23°C the T3/T4 ratio in plasma was significantly increased after 7 days compared to pair-fed controls, and the same holds for the iodide excretion in the 24-h urine. This paper presents further evidence for a role of the sympathetic nervous system on T4 metabolism in rats at resting conditions.


2015 ◽  
Author(s):  
Giulia Brigante ◽  
Bo Carlsson ◽  
Simone Kersseboom ◽  
Robin P Peeters ◽  
Theo J Visser

2011 ◽  
Vol 25 (1) ◽  
pp. 1-14 ◽  
Author(s):  
W. Edward Visser ◽  
Edith C. H. Friesema ◽  
Theo J. Visser

The effects of thyroid hormone (TH) on development and metabolism are exerted at the cellular level. Metabolism and action of TH take place intracellularly, which require transport of the hormone across the plasma membrane. This process is mediated by TH transporter proteins. Many TH transporters have been identified at the molecular level, although a few are classified as specific TH transporters, including monocarboxylate transporter (MCT)8, MCT10, and organic anion-transporting polypeptide 1C1. The importance of TH transporters for physiology has been illustrated dramatically by the causative role of MCT8 mutations in males with psychomotor retardation and abnormal serum TH concentrations. Although Mct8 knockout animals have provided insight in the mechanisms underlying parts of the endocrine phenotype, they lack obvious neurological abnormalities. Thus, the pathogenesis of the neurological abnormalities in males with MCT8 mutations is not fully understood. The prospects of identifying other transporters and transporter-based syndromes promise an exciting future in the TH transporter field.


2021 ◽  
pp. 1-21
Author(s):  
Yan‐Yun Liu ◽  
Gregory A. Brent

2003 ◽  
Vol 369 (3) ◽  
pp. 477-484 ◽  
Author(s):  
Antonio De LUCA ◽  
Anna SEVERINO ◽  
Paola De PAOLIS ◽  
Giuliano COTTONE ◽  
Luca De LUCA ◽  
...  

Thyroid hormone receptors (TRs) and members of the myocyte enhancer factor 2 (MEF2) family are involved in the regulation of muscle-specific gene expression during myogenesis. Physical interaction between these two factors is required to synergistically activate gene transcription. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) interacting with transcription factors is able to increase their activity on target gene promoters. We investigated the role of p300 in regulating the TR—MEF2A complex. To this end, we mapped the regions of these proteins involved in physical interactions and we evaluated the expression of a chloramphenicol acetyltransferase (CAT) reporter gene in U2OS cells under control of the α-myosin heavy chain promoter containing the thyroid hormone response element (TRE). Our results suggested a role of p300/CBP in mediating the transactivation effects of the TR—retenoid X receptor (RxR)—MEF2A complex. Our findings showed that the same C-terminal portion of p300 binds the N-terminal domains of both TR and MEF2A, and our in vivo studies demonstrated that TR, MEF2A and p300 form a ternary complex. Moreover, by the use of CAT assays, we demonstrated that adenovirus E1A inhibits activation of transcription by TR—RxR—MEF2A—p300 but not by TR—RxR—MEF2A. Our data suggested that p300 can bind and modulate the activity of TR—RxR—MEF2A at TRE. In addition, it is speculated that p300 might modulate the activity of the TR—RxR—MEF2A complex by recruiting a hypothetical endogenous inhibitor which may act like adenovirus E1A.


Aquaculture ◽  
1995 ◽  
Vol 135 (1-3) ◽  
pp. 87-98 ◽  
Author(s):  
Yasuo Inui ◽  
Keisuke Yamano ◽  
Satoshi Miwa

2010 ◽  
Vol 16 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Constantinos Pantos ◽  
Iordanis Mourouzis ◽  
Dennis V. Cokkinos

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


1977 ◽  
Vol 232 (5) ◽  
pp. C196-C201 ◽  
Author(s):  
K. D. Philipson ◽  
I. S. Edelman

To assess the possible role of the Na+ pump in mediating physiological responses to thyroid hormone in the rat myocardium, we examined the effects of L-3,5,3'-triiodothyronine (T3) on the activities of the closely associated enzymes, Na+-K+-dependent adenosine triphosphatase (Na-K-ATPase) and K+-dependent p-nitrophenyl phosphatase (K-dep-pNPPase). In hypothyroid rats, administration of T3 (50 microng/100 g body wt) resulted in significant increases (greater than 50%) in Na-K-ATPase and K-dep-pNPPase activities in both crude homogenates and microsomal fractions of the rat ventricle. Significant effects on Na-K-ATPase activity were also attained with low doses (1 microng/100 g body wt) of T3. A method was developed for assaying K-dep-pNPPase activity in cardiac slices. With this technique, enhancement in K-dep-pNPPase activity of 89.2% was found in ventricle slices after treatment of hypothyroid rats with T3 (50 microng/100 g body wt), implying that augmentation of the capacity of the Na+ pump is achieved in vivo. The potent analogue, L-3,5-diiodo-3' isopropyl thyronine (isopropyl T2) had the same effects on cardiac growth and Na-K-ATPase as T3, in hypothyroid rats. In contrast, the relatively inactive isomer, L-3,3',5'-triiodothyronine (reverse T3) had no significant effect on the heart weight-to-body weight ratio or on ventricular Na-K-ATPase activity.


Sign in / Sign up

Export Citation Format

Share Document