scholarly journals The analgesic effect of dipyrone in peripheral tissue involves two different mechanisms: Neuronal KATP channel opening and CB1 receptor activation

2014 ◽  
Vol 741 ◽  
pp. 124-131 ◽  
Author(s):  
Gilson Gonçalves dos Santos ◽  
Elayne Vieira Dias ◽  
Juliana Maia Teixeira ◽  
Maria Carolina Pedro Athie ◽  
Ivan José Magayewski Bonet ◽  
...  
2021 ◽  
pp. 108625
Author(s):  
Sheila A. Engi ◽  
Erin J. Beebe ◽  
Victoria M. Ayvazian ◽  
Fabio C. Cruz ◽  
Joseph F. Cheer ◽  
...  

Surgery ◽  
2000 ◽  
Vol 128 (2) ◽  
pp. 368-373 ◽  
Author(s):  
Benjamin J. Pomerantz ◽  
Thomas N. Robinson ◽  
Julie K. Heimbach ◽  
Casey M. Calkins ◽  
Stephanie A. Miller ◽  
...  

Resuscitation ◽  
2014 ◽  
Vol 85 (6) ◽  
pp. 826-832 ◽  
Author(s):  
Anne Brücken ◽  
Pinar Kurnaz ◽  
Christian Bleilevens ◽  
Matthias Derwall ◽  
Joachim Weis ◽  
...  

1996 ◽  
Vol 11 (4) ◽  
pp. 192-196 ◽  
Author(s):  
H. Köppel ◽  
S. Holzmann ◽  
W. Klein ◽  
E. Horn ◽  
S. Horn ◽  
...  

2018 ◽  
Vol 3 (2) ◽  
pp. 13 ◽  
Author(s):  
AA Spasov ◽  
OY Grechko ◽  
DM Shtareva ◽  
AI Raschenko ◽  
Natalia Eliseeva ◽  
...  

Introduction: Opioid analgesics are the most efficient and widely used drugs for the management of moderate to severe pain. However, side effects associated with mu receptor activation, such as respiratory depression, tolerance and physical dependence severely limit their clinical application. Currently, the kappa-opioid system is the most attractive in terms of the clinical problem of pain, because kappa-agonists do not cause euphoria and physical dependence. The purpose of this study was to evaluate the antinociceptive effect of the novel compound - RU-1205. Methods: The analgesic activity of RU-1205 was studied on nociceptive models that characterize the central and peripheral pathways of pain sensitivity (hot plate test, electrically induced vocalisation, formalin test, writhing test). Results: RU-1205 exhibited highly potent antinociceptive effects in rodent models of acute pain with ED50 values of 0.002 - 0.49 mg /kg. Pretreatment with the κ-opioid receptor antagonist norBinaltorphimine significantly attenuated the analgesic activity of investigated substance in a hot plate test. Conclusions: It was established that the compound shows a significant dose-dependent central and peripheral analgesic effect. It was assumed kappa-opioidergic mechanism of analgesic effect of RU-1205.


SURG Journal ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 21-29
Author(s):  
Rachel I. Downey ◽  
Cheryl L. Limebeer ◽  
Heather I. Morris ◽  
Linda A. Parker

This study investigates the role of the endocannabinoid 2-arachidonyl glycerol (2-AG) in regulating acute and anticipatory nausea in rats using the conditioned gaping model. The animals were systemically pretreated with MJN110, a selective monoacylglycerol lipase (MAGL) inhibitor, to enhance endogenous levels of 2-AG. Acute nausea was assessed using the taste reactivity model in which a flavour, saccharin, was paired with the administration of the emetic agent, lithium chloride (LiCl). Anticipatory nausea was assessed using a model of contextually elicited conditioned gaping in which a context was paired with the emetic agent, LiCl. Results indicated that MJN110 at the 10.0 mg kg-1 and 20.0 mg kg-1 dosage significantly attenuated acute and anticipatory nausea, as displayed by the significant reduction in mean number of gapes. This suppression was mediated by CB1 receptor activation as displayed by reversal of such effects when MJN110 was coadministered with the CB1 receptor antagonist, SR 141716. The results suggest that enhancement of endogenous 2-AG levels by MAGL inhibition may have anti-emetic potential. Keywords: 2-arachidonyl glycerol; monoacylglycerol lipase; endocannabinoid; nausea; conditioned gaping; CB1 receptor


2017 ◽  
Vol 313 (2) ◽  
pp. L267-L277 ◽  
Author(s):  
Z. Helyes ◽  
Á. Kemény ◽  
K. Csekő ◽  
É. Szőke ◽  
K. Elekes ◽  
...  

Sporadic clinical reports suggested that marijuana smoking induces spontaneous pneumothorax, but no animal models were available to validate these observations and to study the underlying mechanisms. Therefore, we performed a systematic study in CD1 mice as a predictive animal model and assessed the pathophysiological alterations in response to 4-mo-long whole body marijuana smoke with integrative methodologies in comparison with tobacco smoke. Bronchial responsiveness was measured with unrestrained whole body plethysmography, cell profile in the bronchoalveolar lavage fluid with flow cytometry, myeloperoxidase activity with spectrophotometry, inflammatory cytokines with ELISA, and histopathological alterations with light microscopy. Daily marijuana inhalation evoked severe bronchial hyperreactivity after a week. Characteristic perivascular/peribronchial edema, atelectasis, apical emphysema, and neutrophil and macrophage infiltration developed after 1 mo of marijuana smoking; lymphocyte accumulation after 2 mo; macrophage-like giant cells, irregular or destroyed bronchial mucosa, goblet cell hyperplasia after 3 mo; and severe atelectasis, emphysema, obstructed or damaged bronchioles, and endothelial proliferation at 4 mo. Myeloperoxidase activity, inflammatory cell, and cytokine profile correlated with these changes. Airway hyperresponsiveness and inflammation were not altered in mice lacking the CB1 cannabinoid receptor. In comparison, tobacco smoke induced hyperresponsiveness after 2 mo and significantly later caused inflammatory cell infiltration/activation with only mild emphysema. We provide the first systematic and comparative experimental evidence that marijuana causes severe airway hyperresponsiveness, inflammation, tissue destruction, and emphysema, which are not mediated by the CB1 receptor.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Vincent Minville ◽  
Lionel Mouledous ◽  
Acil Jaafar ◽  
Réjean Couture ◽  
Anne Brouchet ◽  
...  

Abstract Background Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. Methods This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. Results B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. Conclusions It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.


Sign in / Sign up

Export Citation Format

Share Document