Effect of sinus proximity, alveolar bone level, and initial buccolingual inclination on behavior of maxillary first molar under expansion force: a finite element analysis

Author(s):  
Hasan Camcı ◽  
Farhad Salmanpour
Author(s):  
Xuetao Zhang ◽  
Jian Mao ◽  
Yufeng Zhou ◽  
Fangqiu Ji ◽  
Xianshuai Chen

Alveolar bone atrophy can directly cause a decrease in bone level. The effect of this process on the service life of dental implants is unknown. The aim of this study was to determine the failure forms of the two-piece dental implants in the descending process of alveolar bone level, and the specific states of the components during the failure process. The CAD software SolidWorks was used to establish the model of alveolar bone and dental implants in this article. The finite element analysis was used to analyze the statics of the dental implants in the host oral model. The finite element analysis results showed that the stress concentration point of the implant and abutment in the implant system has changed greatly during the descending process of alveolar bone level, and indirectly increased the fatigue life of the same fatigue risk point. At the same time, the dental implants were tested in vitro in the descending process of alveolar bone level. Then, the fracture of the implant system was scanned by scanning electron microscope. The fatigue test results proved the finite element analysis hypothesis the central screw first fractured under fatigue and then caused an overload break of the implant and abutment.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoning Kang ◽  
Yiming Li ◽  
Yixi Wang ◽  
Yao Zhang ◽  
Dongsheng Yu ◽  
...  

Occlusal trauma caused by improper bite forces owing to the lack of periodontal membrane may lead to bone resorption, which is still a problem for the success of dental implant. In our study, to avoid occlusal trauma, we put forward a hypothesis that a microelectromechanical system (MEMS) pressure sensor is settled on an implant abutment to track stress on the abutment and predict the stress on alveolar bone for controlling bite forces in real time. Loading forces of different magnitudes (0 N–100 N) and angles (0–90°) were applied to the crown of the dental implant of the left central incisor in a maxillary model. The stress distribution on the abutment and alveolar bone were analyzed using a three-dimensional finite element analysis (3D FEA). Then, the quantitative relation between them was derived using Origin 2017 software. The results show that the relation between the loading forces and the stresses on the alveolar bone and abutment could be described as 3D surface equations associated with the sine function. The appropriate range of stress on the implant abutment is 1.5 MPa–8.66 MPa, and the acceptable loading force range on the dental implant of the left maxillary central incisor is approximately 6 N–86 N. These results could be used as a reference for the layout of MEMS pressure sensors to maintain alveolar bone dynamic remodeling balance.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3444
Author(s):  
Avram Manea ◽  
Grigore Baciut ◽  
Mihaela Baciut ◽  
Dumitru Pop ◽  
Dan Sorin Comsa ◽  
...  

Background: Once inserted and osseointegrated, dental implants become ankylosed, which makes them immobile with respect to the alveolar bone. The present paper describes the development of a new and original implant design which replicates the 3D physiological mobility of natural teeth. The first phase of the test followed the resistance of the implant to mechanical stress as well as the behavior of the surrounding bone. Modifications to the design were made after the first set of results. In the second stage, mechanical tests in conjunction with finite element analysis were performed to test the improved implant design. Methods: In order to test the new concept, 6 titanium alloy (Ti6Al4V) implants were produced (milling). The implants were fitted into the dynamic testing device. The initial mobility was measured for each implant as well as their mobility after several test cycles. In the second stage, 10 implants with the modified design were produced. The testing protocol included mechanical testing and finite element analysis. Results: The initial testing protocol was applied almost entirely successfully. Premature fracturing of some implants and fitting blocks occurred and the testing protocol was readjusted. The issues in the initial test helped design the final testing protocol and the new implants with improved mechanical performance. Conclusion: The new prototype proved the efficiency of the concept. The initial tests pointed out the need for design improvement and the following tests validated the concept.


2004 ◽  
Vol 30 (4) ◽  
pp. 223-233 ◽  
Author(s):  
J. P. Geng ◽  
W. Xu ◽  
K. B. C. Tan ◽  
G. R. Liu

Abstract An osseointegrated stepped screw dental implant was evaluated using 2-dimensional finite element analysis (FEA). The implant was modeled in a cross section of the posterior human mandible digitized from a computed tomography (CT) generated patient data set. A 15-mm regular platform (RP) Branemark implant with equivalent length and neck diameter was used as a control. The study was performed under a number of clinically relevant parameters: loading at the top of the transmucosal abutment in vertical, horizontal, and 45° oblique 3 orientations. Elastic moduli of the mandible varied from a normal cortical bone level (13.4 GPa) to a trabecular bone level (1.37 GPa). The study indicated that an oblique load and elastic moduli of the cortical bone are important parameters to the implant design optimization. Compared with the cylindrical screw implant, the maximum von Mises stress of the stepped screw implant model was 17.9% lower in the trabecular bone-implant area. The study also showed that the stepped screw implant is suitable for the cortical bone modulus from 10 to 13.4 GPa, which is not necessarily as strict as the Branemark implant, for which a minimum 13.4 GPa cortical bone modulus is recommended.


Sign in / Sign up

Export Citation Format

Share Document