scholarly journals SAT-011 A negative regulatory role of Smad3 in B cell activation in lupus nephritis via the E4BP4-Mincle-Syk dependent mechanism

2019 ◽  
Vol 4 (7) ◽  
pp. S6
Author(s):  
J. Li PhD ◽  
Z. Wen Jian ◽  
Y. Hui ◽  
T. patrick ◽  
H. Ling ◽  
...  
1989 ◽  
Vol 118 (2) ◽  
pp. 368-381 ◽  
Author(s):  
Menno A. de Rie ◽  
Ton N.M. Schumacher ◽  
Gijs M.W. van Schijndel ◽  
RenéA.W. van Lier ◽  
Frank Miedema

1994 ◽  
Vol 179 (1) ◽  
pp. 221-228 ◽  
Author(s):  
G Fischer ◽  
S C Kent ◽  
L Joseph ◽  
D R Green ◽  
D W Scott

Treatment of the WEHI-2131 or CH31 B cell lymphomas with anti-mu or transforming growth factor (TGF)-beta leads to growth inhibition and subsequent cell death via apoptosis. Since anti-mu stimulates a transient increase in c-myc and c-fos transcription in these lymphomas, we examined the role of these proteins in growth regulation using antisense oligonucleotides. Herein, we demonstrate that antisense oligonucleotides for c-myc prevent both anti-mu- and TGF-beta-mediated growth inhibition in the CH31 and WEHI-231 B cell lymphomas, whereas antisense c-fos has no effect. Furthermore, antisense c-myc promotes the appearance of phosphorylated retinoblastoma protein in the presence of anti-mu and prevents the progression to apoptosis as measured by propidium iodide staining. Northern and Western analyses show that c-myc message and the levels of multiple myc proteins were maintained in the presence of antisense c-myc, results indicating that myc species are critical for the continuation of proliferation and the prevention of apoptosis. These data implicate c-myc in the negative signaling pathway of both TGF-beta and anti-mu.


1998 ◽  
Vol 188 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Thomas Fehr ◽  
Robert C. Rickert ◽  
Bernhard Odermatt ◽  
Jürgen Roes ◽  
Klaus Rajewsky ◽  
...  

Coligation of CD19, a molecule expressed during all stages of B cell development except plasmacytes, lowers the threshold for B cell activation with anti-IgM by a factor of 100. The cytoplasmic tail of CD19 contains nine tyrosine residues as possible phosphorylation sites and is postulated to function as the signal transducing element for complement receptor (CR)2. Generation and analysis of CD19 gene–targeted mice revealed that T cell–dependent (TD) antibody responses to proteinaceous antigens were impaired, whereas those to T cell–independent (TI) type 2 antigens were normal or even augmented. These results are compatible with earlier complement depletion studies and the postulated function of CD19. To analyze the role of CD19 in antiviral antibody responses, we immunized CD19−/− mice with viral antigens of TI-1, TI-2, and TD type. The effect of CD19 on TI responses was more dependent on antigen dose and replicative capacity than on antigen type. CR blocking experiments confirmed the role of CD19 as B cell signal transducer for complement. In contrast to immunization with protein antigens, infection of CD19−/− mice with replicating virus led to generation of specific germinal centers, which persisted for >100 d, whereas maintenance of memory antibody titers as well as circulating memory B cells was fully dependent on CD19. Thus, our study confirms a costimulatory role of CD19 on B cells under limiting antigen conditions and indicates an important role for B cell memory.


2019 ◽  
Vol 34 (Supplement_1) ◽  
Author(s):  
Jinhong Li ◽  
Yang Hui ◽  
Tang Mk Patrick ◽  
Zhu Wenjian ◽  
Huang Xiaoru ◽  
...  

2012 ◽  
Vol 3 ◽  
Author(s):  
Stéphane Chevrier ◽  
Céline Genton ◽  
Bernard Malissen ◽  
Marie Malissen ◽  
Hans Acha-Orbea

2019 ◽  
Vol 116 (3) ◽  
pp. 578a
Author(s):  
Remi Veneziano ◽  
Tyson Moyer ◽  
Matthew B. Stone ◽  
Sudha Kumari ◽  
William R. Schief ◽  
...  

2020 ◽  
Vol 318 (5) ◽  
pp. F1258-F1270 ◽  
Author(s):  
Li Xiang ◽  
An Liu ◽  
Guoshuang Xu

B lymphocyte hyperactivity plays a pathogenic role in systemic lupus erythematosus (SLE), and spliced X box-binding protein 1 (XBP1s) has been implicated in B cell maturation and differentiation. We hypothesized that blockade of the XBP1s pathway inhibits the B cell hyperactivity underlying SLE and lupus nephritis (LN) development. In the present study, we systematically evaluated the changes in B cell activation induced by the Xbp1 splicing inhibitor STF083010 in a pristane-induced lupus mouse model. The lupus mouse model was successfully established, as indicated by the presence of LN with markedly increased urine protein levels, renal deposition of Ig, and mesangial cell proliferation. In lupus mice, B cell hyperactivity was confirmed by increased CD40 and B cell-activating factor levels. B cell activation and plasma cell overproduction were determined by increases in CD40-positive and CD138-positive cells in the spleens of lupus mice by flow cytometry and further confirmed by CD45R and Ig light chain staining in the splenic tissues of lupus mice. mRNA and protein expression of XBP1s in B cells was assessed by real-time PCR, Western blot analysis, and immunofluorescence analysis and was increased in lupus mice. In addition, almost all changes were reversed by STF083010 treatment. However, the expression of XBP1s in the kidneys did not change when mice were exposed to pristane and STF083010. Taken together, these findings suggest that expression of XBP1s in B cells plays key roles in SLE and LN development. Blockade of the XBP1s pathway may be a potential strategy for SLE and LN treatment.


Sign in / Sign up

Export Citation Format

Share Document