Perovskite titanate cathode decorated by in-situ grown iron nanocatalyst with enhanced electrocatalytic activity for high-temperature steam electrolysis

2014 ◽  
Vol 127 ◽  
pp. 215-227 ◽  
Author(s):  
Qingqing Qin ◽  
Guojian Wu ◽  
Shigang Chen ◽  
Winston Doherty ◽  
Kui Xie ◽  
...  
SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 130-137 ◽  
Author(s):  
Chuan Lu ◽  
Huiqing Liu ◽  
Wei Zhao ◽  
Keqin Lu ◽  
Yongge Liu ◽  
...  

Summary In this study, the effects of viscosity-reducer (VR) concentration, salinity, water/oil ratio (WOR), and temperature on the performance of emulsions are examined on the basis of the selected VR. Different VR-injection scenarios, including single-VR injection and coinjection of steam and VR, are conducted after steamflooding by use of single-sandpack models. The results show that high VR concentration, high WOR, and low salinity are beneficial to form stable oil/water emulsions. The oil recoveries of steamflooding for bitumen and heavy oil are approximately 31 and 52%, respectively. The subsequent VR flooding gives an incremental oil recovery of 5.2 and 6.4% for bitumen and heavy oil, respectively. Flooding by steam/VR induces an additional oil recovery of 8.4–11.0% for bitumen and 12.1% for heavy oil. High-temperature steam favors the peeling off of oil and improving its fluidity, as well as the in-situ emulsions. VR solution is beneficial for the oil dispersion and further viscosity reduction. The coinjection of high-temperature steam and VR is much more effective for additional oil production in viscous-oil reservoirs.


2014 ◽  
Vol 454 (1-3) ◽  
pp. 192-199 ◽  
Author(s):  
Walid Mohamed ◽  
Di Yun ◽  
Kun Mo ◽  
Michael J. Pellin ◽  
Michael C. Billone ◽  
...  

2014 ◽  
Vol 39 (11) ◽  
pp. 5485-5496 ◽  
Author(s):  
Wentao Qi ◽  
Cong Ruan ◽  
Guojian Wu ◽  
Yong Zhang ◽  
Yan Wang ◽  
...  

Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


2016 ◽  
Vol 94 (9) ◽  
pp. 1648-1656 ◽  
Author(s):  
Ehsan Mostafavi ◽  
Jennifer H. Pauls ◽  
C. Jim Lim ◽  
Nader Mahinpey

Sign in / Sign up

Export Citation Format

Share Document