Branched Platinum Nanostructures on Reduced Graphene: An excellent Transducer for Nonenzymatic Sensing of Hydrogen Peroxide and Biosensing of Xanthine

2016 ◽  
Vol 206 ◽  
pp. 238-245 ◽  
Author(s):  
Tapan Kumar Behera ◽  
Subash Chandra Sahu ◽  
Biswarup Satpati ◽  
Bamaprasad Bag ◽  
Kali Sanjay ◽  
...  
2014 ◽  
Vol 6 (15) ◽  
pp. 6073 ◽  
Author(s):  
Heting Fang ◽  
Yuliang Pan ◽  
Wenqian Shan ◽  
Manli Guo ◽  
Zhou Nie ◽  
...  

2016 ◽  
Vol 40 (2) ◽  
pp. 1096-1099 ◽  
Author(s):  
Subash Chandra Sahu ◽  
Tapan Kumar Behera ◽  
Ajit Dash ◽  
Bijayalaxmi Jena ◽  
Arnab Ghosh ◽  
...  

A new approach has been developed for highly porous Pd nanostructure–graphene hybrids as efficient electrocatalysts towards reduction of H2O2.


2021 ◽  
Author(s):  
◽  
Lekhetho Simon Mpeta

Conjugates of nanomaterials and metallophthalocyanines (MPcs) have been prepared and their electrocatalytic activity studied. The prepared nanomaterials are zinc oxide and silver nanoparticles, reduced graphene oxide nanosheets and semiconductor quantum dots. The MPcs used in this work are cobalt (II) (1a), manganese(III) (1b) and iron (II) (1c) 2,9(10),16(17),23(24)- tetrakis 4-((4-ethynylbenzyl) oxy) phthalocyaninato, 2,9(10),16(17),23(24)- tetrakis(5-pentyn-oxy) cobalt (II) phthalocyaninato (2), 9(10),16(17),23(24)- tris-[4-tert-butylphenoxy)-2- (4-ethylbezyl-oxy) cobalt (II) phthalocyaninato (3), 9(10),16(17),23(24)- tris-[4-tertbutylphenoxy)-2-(pent-4yn-yloxy)] cobalt (II) phthalocyaninato (4), cobalt (II) (5a) and manganese (III) (5b) 2,9(10),16(17),23(24)- tetrakis [4-(4-(5-chloro-1H-benzo [d]imidazol-2-yl)phenoxy] phthalocyaninato and 9(10),16(17),23(24)- tris tert butyl phenoxy- 2- [4-(4-(5-chloro-1H-benzo[d]imidazole-2-yl)phenoxy] cobalt (II) phthalocyaninato (6). Some of these MPcs (1a, 3 and 4) were directly clicked on azide grafted electrode, while some (1b, 1c, 2, 5a and 5b) were clicked to azide functionalised nanomaterials and then drop-dried on the electrodes. One phthalocyanine (5b) was drop-dried on the electrode then silver nanoparticles were electrodeposited on it taking advantage of metal-N bond. Scanning electrochemical microscopy, voltammetry, chronoamperometry, electrochemical impedance spectroscopy are among electrochemical methods used to characterise modified electrodes. Transmission electron microscopy, X-ray photoelectron spectroscopy, Xray diffractometry, Raman spectroscopy and infrared spectroscopy were employed to study surface functionalities, morphology and topography of the nanomaterials and complexes. Electrocatalytic activity of the developed materials were studied towards oxidation of 2-mercaptoethanol, hydrazine and hydrogen peroxide while the reduction study was based on oxygen and hydrogen peroxide. In general, the conjugates displayed superior catalytic activity when compared to individual materials. Complex 2 alone and when conjugated to zinc oxide nanoparticles were studied for their nonlinear optical behaviour. And the same materials were explored for their hydrazine detection capability. The aim of this study was to develop sensitive, selective and affordable sensors for selected organic waste pollutants. Conjugates were found to achieve the aim of the study compared to when individual materials were employed.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1372
Author(s):  
Mir Ghasem Hosseini ◽  
Vahid Daneshvari-Esfahlan ◽  
Hossein Aghajani ◽  
Sigrid Wolf ◽  
Viktor Hacker

In the present work, nitrogen-doped reduced graphene oxide-supported (NrGO) bimetallic Pd–Ni nanoparticles (NPs), fabricated by means of the electrochemical reduction method, are investigated as an anode electrocatalyst in direct hydrazine–hydrogen peroxide fuel cells (DHzHPFCs). The surface and structural characterization of the synthesized catalyst affirm the uniform deposition of NPs on the distorted NrGO. The electrochemical studies indicate that the hydrazine oxidation current density on Pd–Ni/NrGO is 1.81 times higher than that of Pd/NrGO. The onset potential of hydrazine oxidation on the bimetallic catalyst is also slightly more negative, i.e., the catalyst activity and stability are improved by Ni incorporation into the Pd network. Moreover, the Pd–Ni/NrGO catalyst has a large electrochemical surface area, a low activation energy value and a low resistance of charge transfer. Finally, a systematic investigation of DHzHPFC with Pd–Ni/NrGO as an anode and Pt/C as a cathode is performed; the open circuit voltage of 1.80 V and a supreme power density of 216.71 mW cm−2 is obtained for the synthesized catalyst at 60 °C. These results show that the Pd–Ni/NrGO nanocatalyst has great potential to serve as an effective and stable catalyst with low Pd content for application in DHzHPFCs.


Sign in / Sign up

Export Citation Format

Share Document