The electrocatalytic response of metallophthalocyanines when clicked to electrodes and to nanomaterials

2021 ◽  
Author(s):  
◽  
Lekhetho Simon Mpeta

Conjugates of nanomaterials and metallophthalocyanines (MPcs) have been prepared and their electrocatalytic activity studied. The prepared nanomaterials are zinc oxide and silver nanoparticles, reduced graphene oxide nanosheets and semiconductor quantum dots. The MPcs used in this work are cobalt (II) (1a), manganese(III) (1b) and iron (II) (1c) 2,9(10),16(17),23(24)- tetrakis 4-((4-ethynylbenzyl) oxy) phthalocyaninato, 2,9(10),16(17),23(24)- tetrakis(5-pentyn-oxy) cobalt (II) phthalocyaninato (2), 9(10),16(17),23(24)- tris-[4-tert-butylphenoxy)-2- (4-ethylbezyl-oxy) cobalt (II) phthalocyaninato (3), 9(10),16(17),23(24)- tris-[4-tertbutylphenoxy)-2-(pent-4yn-yloxy)] cobalt (II) phthalocyaninato (4), cobalt (II) (5a) and manganese (III) (5b) 2,9(10),16(17),23(24)- tetrakis [4-(4-(5-chloro-1H-benzo [d]imidazol-2-yl)phenoxy] phthalocyaninato and 9(10),16(17),23(24)- tris tert butyl phenoxy- 2- [4-(4-(5-chloro-1H-benzo[d]imidazole-2-yl)phenoxy] cobalt (II) phthalocyaninato (6). Some of these MPcs (1a, 3 and 4) were directly clicked on azide grafted electrode, while some (1b, 1c, 2, 5a and 5b) were clicked to azide functionalised nanomaterials and then drop-dried on the electrodes. One phthalocyanine (5b) was drop-dried on the electrode then silver nanoparticles were electrodeposited on it taking advantage of metal-N bond. Scanning electrochemical microscopy, voltammetry, chronoamperometry, electrochemical impedance spectroscopy are among electrochemical methods used to characterise modified electrodes. Transmission electron microscopy, X-ray photoelectron spectroscopy, Xray diffractometry, Raman spectroscopy and infrared spectroscopy were employed to study surface functionalities, morphology and topography of the nanomaterials and complexes. Electrocatalytic activity of the developed materials were studied towards oxidation of 2-mercaptoethanol, hydrazine and hydrogen peroxide while the reduction study was based on oxygen and hydrogen peroxide. In general, the conjugates displayed superior catalytic activity when compared to individual materials. Complex 2 alone and when conjugated to zinc oxide nanoparticles were studied for their nonlinear optical behaviour. And the same materials were explored for their hydrazine detection capability. The aim of this study was to develop sensitive, selective and affordable sensors for selected organic waste pollutants. Conjugates were found to achieve the aim of the study compared to when individual materials were employed.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 594 ◽  
Author(s):  
Mara Serrapede ◽  
Marco Fontana ◽  
Arnaud Gigot ◽  
Marco Armandi ◽  
Glenda Biasotto ◽  
...  

A simple, low cost, and “green” method of hydrothermal synthesis, based on the addition of l-ascorbic acid (l-AA) as a reducing agent, is presented in order to obtain reduced graphene oxide (rGO) and hybrid rGO-MoO2 aerogels for the fabrication of supercapacitors. The resulting high degree of chemical reduction of graphene oxide (GO), confirmed by X-Ray Photoelectron Spectroscopy (XPS) analysis, is shown to produce a better electrical double layer (EDL) capacitance, as shown by cyclic voltammetric (CV) measurements. Moreover, a good reduction yield of the carbonaceous 3D-scaffold seems to be achievable even when the precursor of molybdenum oxide is added to the pristine slurry in order to get the hybrid rGO-MoO2 compound. The pseudocapacitance contribution from the resulting embedded MoO2 microstructures, was then studied by means of CV and electrochemical impedance spectroscopy (EIS). The oxidation state of the molybdenum in the MoO2 particles embedded in the rGO aerogel was deeply studied by means of XPS analysis and valuable information on the electrochemical behavior, according to the involved redox reactions, was obtained. Finally, the increased stability of the aerogels prepared with l-AA, after charge-discharge cycling, was demonstrated and confirmed by means of Field Emission Scanning Electron Microscopy (FESEM) characterization.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1525
Author(s):  
Sergey Vorobyev ◽  
Elena Vishnyakova ◽  
Maxim Likhatski ◽  
Alexander Romanchenko ◽  
Ivan Nemtsev ◽  
...  

Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications.


2016 ◽  
Vol 40 (2) ◽  
pp. 1096-1099 ◽  
Author(s):  
Subash Chandra Sahu ◽  
Tapan Kumar Behera ◽  
Ajit Dash ◽  
Bijayalaxmi Jena ◽  
Arnab Ghosh ◽  
...  

A new approach has been developed for highly porous Pd nanostructure–graphene hybrids as efficient electrocatalysts towards reduction of H2O2.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2019 ◽  
Vol 10 ◽  
pp. 62-70 ◽  
Author(s):  
Yong Li ◽  
Peng Yang ◽  
Bin Wang ◽  
Zhongqing Liu

Bimetallic phosphides have been attracting increasing attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties of the samples. The electrochemical performance was investigated by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. We show that after incorporating Co into Ni–P, the resulting Ni x Co y P/TNAs present enhanced electrocatalytic activity due to the improved electron transfer and increased electrochemically active surface area (ECSA). In 0.5 mol L−1 H2SO4 electrolyte, the Ni x Co y P/TNAs (x = 3.84, y = 0.78) demonstrated an ECSA value of 52.1 mF cm−2, which is 3.8 times that of Ni–P/TNAs (13.7 mF cm−2). In a two-electrode system with a Pt sheet as the anode, the Ni x Co y P/TNAs presented a bath voltage of 1.92 V at 100 mA cm−2, which is an improvment of 79% over that of 1.07 V at 10 mA cm−2.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Cheng ◽  
Youjun Fan ◽  
Xingcan Shen ◽  
Hong Liang

A hybrid and hierarchical nanocomposite was successfully prepared by the growth of zeolitic imidazolate framework-8 (ZIF-8) on the template of ionic liquid (IL, [Bmim][BF4]) functionalized reduced graphene oxide (IL-RGO). The structure and morphology of the IL-RGO/ZIF-8 nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR), and Raman spectroscopy. The results showed that RGO sheets were refrained from restacking by IL, and ZIF-8 nanoparticles grew well on the surface of IL-RGO. Owing to the synergistic effect from large surface area and excellent electrocatalytic activity of ZIF-8 and great electrical conductivity of IL-RGO, a highly sensitive sensor for dopamine (DA) can be obtained. IL-RGO/ZIF-8-modified electrode exhibits good electrocatalytic activity and electroconductive properties towards DA which were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Compared with bare or IL-RGO-modified electrodes, the IL-RGO/ZIF-8-modified electrode effectively depressed the oxidation overpotential of DA. The linear response range of DA was from 1.0×10−7 to 1.0×10−4 mol/L with a low detection of limit 3.5×10−8 mol/L. In addition, the sensor was shown to provide satisfactory stability for the determination of DA.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 888 ◽  
Author(s):  
Quang-Tan Bui ◽  
In-Keun Yu ◽  
Anantha Iyengar Gopalan ◽  
Gopalan Saianand ◽  
Woonjung Kim ◽  
...  

In this study, the fabrication of a metal oxide nanoparticles (NPs) dispersed catalytic electrode is described based on a new alternating current (AC) plasma deposition approach. The fabrication involves the treatment of AC plasma on a precursor solution comprised of metal salts such as CuCl2, FeCl2, and ZnCl2, and a monomer (acrylic acid) in the presence/absence of a cross-linker. Furthermore, the utility of such developed electrodes has been demonstrated for the electrochemical determination of hydrogen peroxide (H2O2). The electrode materials obtained through plasma treatment was characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), contact angle measurements, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. Among the metal oxide modified electrodes prepared by the AC plasma deposition method, the copper oxide (CuO) NPs catalytic electrode exhibited significant oxidation and reduction peaks for H2O2 in phosphate-buffered saline solution. The catalytic electrode with CuO NPs exhibited a combination of good H2O2 sensing characteristics such as good sensitivity (63.52 mA M−1 cm−2), good selectivity, low detection limits (0.6 µM), fast sensing response (5 s), a wide linear range (0.5–8.5 mM), and good stability over 120 cycles. Based on our results, it is well demonstrated that plasma deposition could be effectively utilized for the fabrication of the catalytic electrode for detection of H2O2 concentrations. Further, the strategy of using AC plasma for fabrication of metal oxide-based modified electrodes could also be extended for the fabrication of other kinds of nanomaterials-based sensors.


Sign in / Sign up

Export Citation Format

Share Document