Choline chloride based ionic liquids containing nickel chloride: Physicochemical properties and kinetics of Ni(II) electroreduction

2017 ◽  
Vol 245 ◽  
pp. 133-145 ◽  
Author(s):  
A.A. Kityk ◽  
D.A. Shaiderov ◽  
E.A. Vasil'eva ◽  
V.S. Protsenko ◽  
F.I. Danilov
2020 ◽  
Vol 1 (3) ◽  
pp. 238-255
Author(s):  
Guillaume Zante ◽  
Maria Boltoeva

Deep eutectic solvents (DESs) appeared recently as a new class of green designer solvents. The recovery of metals using hydrometallurgy is of major importance with the growth in metal demand. Several authors used these solvents for the hydrometallurgical recovery of metals from primary and secondary resources, and these studies are reviewed in the present work. Hydrophilic DESs can be used for the leaching of metals and have great potential to replace mineral acids, and even to reduce water consumption. Efficient and selective leaching of metals from minerals or wastes is feasible by using DESs. However, the kinetics of leaching as well as the physicochemical properties of DESs are still limiting their large-scale application. Electrochemical recovery from DES is also possible but deserves further investigation. Finally, the recovery of metals from aqueous solutions using hydrophobic DESs was studied in several works. For the solvent extraction of metals, hydrophobic DESs constitute credible alternative ionic liquids.


2021 ◽  
pp. 116452
Author(s):  
Tomasz Rzemieniecki ◽  
Marta Wojcieszak ◽  
Katarzyna Materna ◽  
Tadeusz Praczyk ◽  
Juliusz Pernak

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2560
Author(s):  
Jianwen Meng ◽  
Yong Pan ◽  
Fan Yang ◽  
Yanjun Wang ◽  
Zhongyu Zheng ◽  
...  

The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.


RSC Advances ◽  
2013 ◽  
Vol 3 (27) ◽  
pp. 10736 ◽  
Author(s):  
Michal Sypula ◽  
Ali Ouadi ◽  
Clotilde Gaillard ◽  
Isabelle Billard

Sign in / Sign up

Export Citation Format

Share Document