A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices

2021 ◽  
pp. 139730
Author(s):  
Haiyang Liao ◽  
Wenzhao Zhong ◽  
Ting Li ◽  
Jieling Han ◽  
Xiao Su ◽  
...  
2021 ◽  
Author(s):  
Xiaoling Tong ◽  
Zhengnan Tian ◽  
Jingyu Sun ◽  
Vincent Tung ◽  
Richard B. Kaner ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 622
Author(s):  
Fouzia Mashkoor ◽  
Sun Jin Lee ◽  
Hoon Yi ◽  
Seung Man Noh ◽  
Changyoon Jeong

Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.


2020 ◽  
Vol 10 (46) ◽  
pp. 2002815
Author(s):  
Lorenzo Mezzomo ◽  
Chiara Ferrara ◽  
Gabriele Brugnetti ◽  
Daniele Callegari ◽  
Eliana Quartarone ◽  
...  

2020 ◽  
Vol 30 (24) ◽  
pp. 1909912 ◽  
Author(s):  
Weicong Mai ◽  
Qipeng Yu ◽  
Cuiping Han ◽  
Feiyu Kang ◽  
Baohua Li

2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Dhanasekar Kesavan ◽  
Vimal Kumar Mariappan ◽  
Karthikeyan Krishnamoorthy ◽  
Sang-Jae Kim

In this study, we report a facile carbothermal method for the preparation of boron-oxy-carbide (BOC) nanostructures and explore their properties towards electrochemical energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document