Electro-mechanical demultiplexer enabled by tunable electric circuits

2022 ◽  
pp. 101610
Author(s):  
Yanzheng Wang ◽  
Yongfeng Zheng ◽  
Mikhail V. Golub ◽  
Sergey I. Fomenko ◽  
Guoliang Huang ◽  
...  
Keyword(s):  
Author(s):  
Bharti Saraswat ◽  
Ashok Yadav ◽  
Krishna Kumar Maheshwari

Background- Electric burns and injuries are the result of electric current passing through the body. Temporary or permanent damage can occur to the skin, tissues, and major organs. Methods- This prospective study was carried out on patients admitted in burn unit of department of surgery M.G. Hospital associated with Dr. S.N. Medical College Jodhpur. Records of the patients admitted from January 2018 to December 2018 were studied. Bed head tickets of the patients evaluated in detail. Results- In our study out of 113 patients maximum no. of patients were in age group of 21-30 years 44 (38.94%) followed by age group <11 years in 21 (18.58%) patients and age group of > 60 years in only 3 (2.65%).39 (34.51%) patients were farmer and 15 (13.27%) were electrician in out of 113 total patients, while 37 (32.74%) were without any occupation. 65 (57.52%) cases of high voltage (HV) electrical injury and 48 (42.48%) cases were of low voltage (LV) electrical injury. Conclusion- Morbidity leading to permanent disabilities make the person physically dependent on others. It can be prevented by educating the people about the proper handling to electric circuits & devices. Proper communication among the electricians may help in lowering such accidents. Proper rehabilitation of the handicapped person & employment to the member of the affected family may reduce the social burden caused by such electricity concerned accidents.


2019 ◽  
Vol 24 (4) ◽  
pp. 51-58
Author(s):  
Le Hong Quan ◽  
Nguyen Van Chi ◽  
Mai Van Minh ◽  
Nong Quoc Quang ◽  
Dong Van Kien

The study examines the electrochemical properties of a coating based on water sodium silicate and pure zinc dust (ZSC, working title - TTL-VN) using the Electrochemical Impedance Spectra (EIS) with AutoLAB PGSTAT204N. The system consists of three electrodes: Ag/AgCl (SCE) reference electrode in 3 M solution of KCl, auxiliary electrode Pt (8x8 mm) and working electrodes (carbon steel with surface treatment up to Sa 2.5) for determination of corrosion potential (Ecorr) and calculation of equivalent electric circuits used for explanation of impedance measurement results. It was shown that electrochemical method is effective for study of corrosion characteristics of ZSC on steel. We proposed an interpretation of the deterioration over time of the ability of zinc particles in paint to provide cathodic protection for carbon steel. The results show that the value of Ecorr is between -0,9 and -1,1 V / SCE for ten days of diving. This means that there is an electrical contact between the zinc particles, which provides good cathodic protection for the steel substrate and most of the zinc particles were involved in the osmosis process. The good characteristics of the TTL-VN coating during immersion in a 3,5% NaCl solution can also be explained by the preservation of corrosive zinc products in the coating, which allows the creation of random barrier properties.


Author(s):  
Alexander D. Pisarev

This article studies the implementation of some well-known principles of information work of biological systems in the input unit of the neuroprocessor, including spike coding of information used in models of neural networks of the latest generation.<br> The development of modern neural network IT gives rise to a number of urgent tasks at the junction of several scientific disciplines. One of them is to create a hardware platform&nbsp;— a neuroprocessor for energy-efficient operation of neural networks. Recently, the development of nanotechnology of the main units of the neuroprocessor relies on combined memristor super-large logical and storage matrices. The matrix topology is built on the principle of maximum integration of programmable links between nodes. This article describes a method for implementing biomorphic neural functionality based on programmable links of a highly integrated 3D logic matrix.<br> This paper focuses on the problem of achieving energy efficiency of the hardware used to model neural networks. The main part analyzes the known facts of the principles of information transfer and processing in biological systems from the point of view of their implementation in the input unit of the neuroprocessor. The author deals with the scheme of an electronic neuron implemented based on elements of a 3D logical matrix. A pulsed method of encoding input information is presented, which most realistically reflects the principle of operation of a sensory biological neural system. The model of an electronic neuron for selecting ranges of technological parameters in a real 3D logic matrix scheme is analyzed. The implementation of disjunctively normal forms is shown, using the logic function in the input unit of a neuroprocessor as an example. The results of modeling fragments of electric circuits with memristors of a 3D logical matrix in programming mode are presented.<br> The author concludes that biomorphic pulse coding of standard digital signals allows achieving a high degree of energy efficiency of the logic elements of the neuroprocessor by reducing the number of valve operations. Energy efficiency makes it possible to overcome the thermal limitation of the scalable technology of three-dimensional layout of elements in memristor crossbars.


Sign in / Sign up

Export Citation Format

Share Document