scholarly journals An energy model of high-rise apartment buildings integrating variation in energy consumption between individual units

2018 ◽  
Vol 158 ◽  
pp. 656-667 ◽  
Author(s):  
Hyunju Jang ◽  
Jian Kang
Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 945 ◽  
Author(s):  
Yong Qiu ◽  
Chi Zhang ◽  
Bing Li ◽  
Ji Li ◽  
Xiaoyuan Zhang ◽  
...  

Oxidation ditches are popularly used in rural areas and decentralized treatment facilities where energy deficiency is of concern. Aeration control technologies are well established for diffusion systems in order to improve energy efficiency, but there are still challenges in their application in oxidation ditches because surface aerators have unique characteristics with respect to oxygen transfer and energy consumption. In this paper, an integral energy model was proposed to include the energy, aeration, and fluidic effects of surface aerators, by which the energy for aeration of each aerator can be estimated using online data. Two types of rotating disks with different diameters (1800 mm and 1400 mm) were monitored in situ to estimate the model parameters. Furthermore, a feedforward–feedback loop control strategy was proposed using the concept of energy analysis and optimization. The simplified control system was implemented in a full-scale Orbal oxidation ditch, achieving an approximately 10% saving in full-process energy consumption. The cost–benefit analysis and carbon emission assessment confirmed the economic feasibility and environmental contribution of the control system. The energy model can help process designers and operators to better understand and optimally control the aeration process in oxidation ditches.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


Sign in / Sign up

Export Citation Format

Share Document