scholarly journals Optimal Surface Aeration Control in Full-Scale Oxidation Ditches through Energy Consumption Analysis

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 945 ◽  
Author(s):  
Yong Qiu ◽  
Chi Zhang ◽  
Bing Li ◽  
Ji Li ◽  
Xiaoyuan Zhang ◽  
...  

Oxidation ditches are popularly used in rural areas and decentralized treatment facilities where energy deficiency is of concern. Aeration control technologies are well established for diffusion systems in order to improve energy efficiency, but there are still challenges in their application in oxidation ditches because surface aerators have unique characteristics with respect to oxygen transfer and energy consumption. In this paper, an integral energy model was proposed to include the energy, aeration, and fluidic effects of surface aerators, by which the energy for aeration of each aerator can be estimated using online data. Two types of rotating disks with different diameters (1800 mm and 1400 mm) were monitored in situ to estimate the model parameters. Furthermore, a feedforward–feedback loop control strategy was proposed using the concept of energy analysis and optimization. The simplified control system was implemented in a full-scale Orbal oxidation ditch, achieving an approximately 10% saving in full-process energy consumption. The cost–benefit analysis and carbon emission assessment confirmed the economic feasibility and environmental contribution of the control system. The energy model can help process designers and operators to better understand and optimally control the aeration process in oxidation ditches.

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Linfei Hou ◽  
Liang Zhang ◽  
Jongwon Kim

To improve the energy efficiency of a mobile robot, a novel energy modeling method for mobile robots is proposed in this paper. The robot can calculate and predict energy consumption through the energy model, which provides a guide to facilitate energy-efficient strategies. The energy consumption of the mobile robot is first modeled by considering three major factors: the sensor system, control system, and motion system. The relationship between the three systems is elaborated by formulas. Then, the model is utilized and experimentally tested in a four-wheeled Mecanum mobile robot. Furthermore, the power measurement methods are discussed. The energy consumption of the sensor system and control system was at the milliwatt level, and a Monsoon power monitor was used to accurately measure the electrical power of the systems. The experimental results showed that the proposed energy model can be used to predict the energy consumption of the robot movement processes in addition to being able to efficiently support the analysis of the energy consumption characteristics of mobile robots.


2015 ◽  
Vol 725-726 ◽  
pp. 1395-1401 ◽  
Author(s):  
Nikolay Vatin ◽  
Darya Nemova ◽  
Yulia Ibraeva ◽  
Philipp Tarasevskii

The article presents a structural analysis of the energy consumption of multi-story residential building, which based on analysis of the actual data flow and heat consumption data and energy audit for assessing the condition of the heating system. Methods been proposed to improve energy efficiency. The calculation shows the need and economic feasibility of the implementation of organizational and technical measures proposed in the article.


Author(s):  
Jeannie Benson

Improving efficiency and saving money are primary concerns of any citrus processing operation. Conducting a full scale energy audit will reveal the energy use characteristics of your entire operation and help you to discover opportunities to improve energy efficiency. Projects are evaluated on the basis of economic feasibility and operational practicality, and accepted or rejected by the appropriate plant personnel. Utility rebates are often available for the accepted projects based upon energy savings. Energy efficiency programs can be, and have been, used to improve operational efficiency and save money — money that could be better used to expand your operation or increase your profit margin. Paper published with permission.


2020 ◽  
pp. 0958305X2094998
Author(s):  
Chun Chih Chen

Taiwan intends to be nuclear free by 2025. This study employs the Lotka–Volterra competition model for sustainable development to analyze the emissions–energy–economy (3Es) issue to make appropriate policy suggestions for a nuclear-free transition. It also offers a new approach to naming the 3E relationship. The literature review shows that the environmental Kuznets curve accompanies the feedback and conservation hypotheses. In the 3E dynamics relationship analysis, the model shows a good mean absolute percentage error (<15%) for the model estimation. The key findings are as follows: 1) the fossil fuel-led economy exists; 2) CO2 emissions are reduced with nuclear energy consumption; 3) renewable energy is far from scale; 4) a complementary effect exists between fossil fuel and nuclear energy consumption; and 5) gas retrofitting and phasing out of nuclear seem imminent. In the energy transition, Taiwan drastically cuts nuclear energy without considering energy diversity due to which troubles might ensue. The priority issue for Taiwan’s energy mix is energy security. To deal with these concerns, this study suggests the government could improve energy efficiency, build a smart grid, develop carbon capture and storage, and reconsider putting nuclear energy back into the energy mix before renewable energy is scaled.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1010
Author(s):  
Aichun Jiang ◽  
Qian Zhong ◽  
Yan Wang ◽  
Yibin Ao ◽  
Chuan Chen

With rapid rural urbanization and new rural construction, the commercial energy consumption of rural residents shows a trend of rapid growth, and China’s rural areas are also faced with environmental challenges brought by the increase of commercial energy consumption. China’s commercial energy consumption behavior of rural residents has also undergone tremendous changes. However, scholars have neglected the research on rural residents’ commercial energy consumption intention from a micro perspective. Therefore, this study takes the 5 villages in Chengdu out of the 100 representative villages in the Sichuan province as examples. From the perspective of the head of a family of permanent rural residents, extended planned behavior theory, exploratory factor analysis, and structural equation modeling are used to explore the influencing factors of rural resident commercial energy consumption intention and their relationship. Findings show that subjective norm, perceived behavioral control (PBC), and habit significantly affect residents’ behavioral intention. Habits significantly influence subjective norms and PBC. Therefore, in the new rural construction, rural residents are the main body and participants of energy consumption. Local government departments should plan reasonably according to the needs and characteristics of residents, constantly improve commercial energy infrastructure, improve service level, and further strengthen farmers’ attitude and satisfaction toward commercial energy. Moreover, they should increase the publicity and education of commercial energy, advocate green housing, and promote energy saving consumption reduction, and sustainable development in new rural areas.


2021 ◽  
Vol 13 (8) ◽  
pp. 4180
Author(s):  
Andrzej Czerepicki ◽  
Tomasz Krukowicz ◽  
Anna Górka ◽  
Jarosław Szustek

The article presents an analysis of priority solutions for trams at a selected sequence of intersections in Warsaw (Poland). An analysis of the literature has shown the topicality of this issue. A computer simulation model of a coordinated sequence of intersections was constructed. Three test scenarios were designed: the existing control system, the new coordinated fixed-time control system, and the adaptive control system with active priority. In the simulation process, detailed travel characteristics of trams and other traffic participants in a selected section were obtained for the three varying scenarios. Electric energy consumption for traction needs and pollutant emissions was then estimated for each of the variants. It was concluded that for the analyzed configuration, implementation of the adaptive priority will result in a reduction of tram time losses by up to 25%, a reduction in energy consumption by up to 23%, and a reduction in the emission of pollutants from individual vehicles by up to 3% in relation to the original variant. The conducted research may be the basis for a comprehensive method of assessing the effectiveness of applying the adaptative priority when designing new tramway lines and modernizing the existing ones.


2011 ◽  
Vol 383-390 ◽  
pp. 3077-3080
Author(s):  
Xin Tong Tang ◽  
Chang Qing Cai

Control system of industrial furnace is optimized based on the aspect of the combustion. General goal of the control system is to achieve the lowest fuel with the constraints of ensuring the target control temperature of the equipment. And in different output and different fuel quantity conditions, the air-fuel rate is automatically optimized to achieve the goal of energy consumption combined with gas temperature of furnace temperature, oxygen and many parameters.


2021 ◽  
Vol 13 (7) ◽  
pp. 3810
Author(s):  
Alessandra Cantini ◽  
Leonardo Leoni ◽  
Filippo De Carlo ◽  
Marcello Salvio ◽  
Chiara Martini ◽  
...  

The cement industry is highly energy-intensive, consuming approximately 7% of global industrial energy consumption each year. Improving production technology is a good strategy to reduce the energy needs of a cement plant. The market offers a wide variety of alternative solutions; besides, the literature already provides reviews of opportunities to improve energy efficiency in a cement plant. However, the technology is constantly developing, so the available alternatives may change within a few years. To keep the knowledge updated, investigating the current attractiveness of each solution is pivotal to analyze real companies. This article aims at describing the recent application in the Italian cement industry and the future perspectives of technologies. A sample of plant was investigated through the analysis of mandatory energy audit considering the type of interventions they have recently implemented, or they intend to implement. The outcome is a descriptive analysis, useful for companies willing to improve their sustainability. Results prove that solutions to reduce the energy consumption of auxiliary systems such as compressors, engines, and pumps are currently the most attractive opportunities. Moreover, the results prove that consulting sector experts enables the collection of updated ideas for improving technologies, thus giving valuable inputs to the scientific research.


Sign in / Sign up

Export Citation Format

Share Document