Design and practice of prefabricated zero energy building in cold plateau area

2021 ◽  
Vol 251 ◽  
pp. 111332
Author(s):  
Jing Wang ◽  
Xu Han ◽  
Jinfeng Mao ◽  
Weihua Li
2018 ◽  
Vol 8 (1) ◽  
pp. 211-221
Author(s):  
Negar Aminoroayaei ◽  
Bahram Shahedi

In the current century, a suitable strategy is concerned for optimal consumption of energy, due to limited natural resources and fossil fuels for moving towards sustainable development and environmental protection. Given the rising cost of energy, environmental pollution and the end of fossil fuels, zero-energy buildings became a popular option in today's world. The purpose of this study is to investigate the factors affecting the design of zero-energy buildings, in order to reduce energy consumption and increase productivity, including plan form, climatic characteristics, materials, coverage etc. The present study collects the features of zero-energy building in Isfahan, which is based on the Emberger Climate View in the arid climate, by examining the books and related writings, field observations and using a descriptive method, in the form of qualitative studies. The results of the research showed that some actions are needed to save energy and, in general, less consumption of renewable energy by considering the climate and the use of natural conditions.


2020 ◽  
Author(s):  
Kaustav Das ◽  
Subhojit Chattaraj ◽  
Akash Roy ◽  
Moutoshi Das ◽  
Remon Roy ◽  
...  

Author(s):  
Nikos Kampelis ◽  
Nikolaos Sifakis ◽  
Denia Kolokotsa ◽  
Konstantinos Gobakis ◽  
Konstantinos Kalaitzakis ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Sign in / Sign up

Export Citation Format

Share Document