Design and synthesis of microcapsules with cross-linking network supporting core for supercooling degree regulation

2021 ◽  
Vol 253 ◽  
pp. 111437
Author(s):  
Xiaojuan Wang ◽  
Yan Gao ◽  
Na Han ◽  
Xingxiang Zhang ◽  
Wei Li
2009 ◽  
Vol 53 (1) ◽  
pp. 169-170 ◽  
Author(s):  
S. Kusano ◽  
K. Hattori ◽  
S. Imoto ◽  
F. Nagatsugi

2019 ◽  
Vol 84 (9) ◽  
pp. 5187-5194 ◽  
Author(s):  
Huilei Dong ◽  
Xiaoting Meng ◽  
Xiaoli Zheng ◽  
Xueting Cheng ◽  
Yiwu Zheng ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 944 ◽  
Author(s):  
Xiong Wang ◽  
Cuiling Zhang ◽  
Wenxia Liu ◽  
Pingsheng Zhang

Porous organic polymers (POPs) are highly versatile materials that find applications in adsorption, separation, and catalysis. Herein, a feasibility study on the design and synthesis of POP supports with a tunable pore structure and high ethylene-polymerization activity was conducted by the selection of functional comonomers and template agents, and control of cross-linking degree of their frameworks. Functionalized POPs with a tunable pore structure were designed and synthesized by a dispersion polymerization strategy. The functional comonomers incorporated in the poly(divinylbenzene) (PDVB)-based matrix played a significant role in the porous structure and particle morphology of the prepared polymers, and a specific surface area (SSA) of 10–450 m2/g, pore volume (PV) of 0.05–0.5 cm3/g, bulk density with a range of 0.02–0.40 g/cm3 were obtained by the varied functional comonomers. Besides the important factors of thermodynamic compatibility of the selected solvent system, other factors that could be used to tune the pore structure and morphology of the POP particles have been also investigated. The Fe3O4 nanoaggregates as a template agent could help improve the porous structure and bulk density of the prepared POPs, and the highly cross-linking networks can dramatically increase the porous fabric of the prepared POPs. As for the immobilized metallocene catalysts, the pore structure of the prepared POPs had a significant influence on the loading amount of the Zr and Al of the active sites, and the typically highly porous structure of the POPs would contribute the immobilization of the active species. High ethylene-polymerization activity of 8033 kg PE/mol Zr h bar was achieved on the POPs-supported catalysts, especially when high Al/Zr ratios on the catalysts were obtained. The performance of the immobilized metallocene catalysts was highly related to the pore structure and functional group on the POP frameworks.


2000 ◽  
Vol 44 (1) ◽  
pp. 39-40 ◽  
Author(s):  
F. Nagatsugi ◽  
D. Usui ◽  
T. Kawasaki ◽  
M. Maeda ◽  
S. Sasaki

2001 ◽  
Vol 123 (20) ◽  
pp. 4865-4866 ◽  
Author(s):  
Qun Zhou ◽  
Wenhu Duan ◽  
Denise Simmons ◽  
Yuda Shayo ◽  
Mary Ann Raymond ◽  
...  

2016 ◽  
Vol 18 (24) ◽  
pp. 6536-6544 ◽  
Author(s):  
Fujian Liu ◽  
Chen Liu ◽  
Weiping Kong ◽  
Chenze Qi ◽  
Anmin Zheng ◽  
...  

Micro–meso–macroporous polymers with versatile active sites were synthesized by hyper-cross-linking technology, which exhibit excellent activities for catalyzing production of biofuels and fine chemicals.


Sign in / Sign up

Export Citation Format

Share Document