scholarly journals Performance of lightweight and heavyweight building walls with naturally ventilated passive and active facades

2021 ◽  
pp. 111751
Author(s):  
Mohammad Rahiminejad ◽  
Alexandre Louis Marie Pâris ◽  
Hua Ge ◽  
Dolaana Khovalyg
Keyword(s):  
Author(s):  
Joseph M. Blum ◽  
Edward P. Gargiulo ◽  
J. R. Sawers

It is now well-known that chatter (Figure 1) is caused by vibration between the microtome arm and the diamond knife. It is usually observed as a cyclical variation in “optical” density of an electron micrograph due to sample thickness variations perpendicular to the cutting direction. This vibration might be induced by using too large a block face, too large a clearance angle, excessive cutting speed, non-uniform embedding medium or microtome vibration. Another prominent cause is environmental vibration caused by inadequate building construction. Microtomes should be installed on firm, solid floors. The best floors are thick, ground-level concrete pads poured over a sand bed and isolated from the building walls. Even when these precautions are followed, we recommend an additional isolation pad placed on the top of a sturdy table.


2018 ◽  
Vol 83 (754) ◽  
pp. 955-964
Author(s):  
Kazunori TAKADA ◽  
Koichi TATEMATSU ◽  
Kei SHIMONOSONO ◽  
Hirofumi HAYAMA ◽  
Taro MORI ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 345
Author(s):  
Konstantinos Chaidas ◽  
George Tataris ◽  
Nikolaos Soulakellis

In a post-earthquake scenario, the semantic enrichment of 3D building models with seismic damage is crucial from the perspective of disaster management. This paper aims to present the methodology and the results for the Level of Detail 3 (LOD3) building modelling (after an earthquake) with the enrichment of the semantics of the seismic damage based on the European Macroseismic Scale (EMS-98). The study area is the Vrisa traditional settlement on the island of Lesvos, Greece, which was affected by a devastating earthquake of Mw = 6.3 on 12 June 2017. The applied methodology consists of the following steps: (a) unmanned aircraft systems (UAS) nadir and oblique images are acquired and photogrammetrically processed for 3D point cloud generation, (b) 3D building models are created based on 3D point clouds and (c) 3D building models are transformed into a LOD3 City Geography Markup Language (CityGML) standard with enriched semantics of the related seismic damage of every part of the building (walls, roof, etc.). The results show that in following this methodology, CityGML LOD3 models can be generated and enriched with buildings’ seismic damage. These models can assist in the decision-making process during the recovery phase of a settlement as well as be the basis for its monitoring over time. Finally, these models can contribute to the estimation of the reconstruction cost of the buildings.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3835
Author(s):  
Robert Dylewski ◽  
Janusz Adamczyk

The energy efficiency of the construction sector should be determined by the cleanliness of the environment and, thus, the health of society. The scientific aim of this article was to develop a methodology for determining the optimum thickness of thermal insulation, taking into account both economic and ecological aspects and considering both heating and cooling costs. The method takes into account the number of degree days of the heating period, as well as the number of degree days of the cooling period. Variants in terms of different types of thermal insulation, various types of construction materials for building walls, climatic zones and heat sources, were taken into consideration. In order to find the optimum thicknesses of thermal insulation, both in economic and ecological terms, a metacriterion was used. The optimum thicknesses of thermal insulation with the use of the metacriterion were obtained in the range of 0.11–0.55 m. It was observed that the values of the optimum heat transfer coefficients for economic and ecological reasons do not depend on the type of construction materials used for vertical walls. The type of applied heat source is of the greatest importance for the size of the economic and ecological benefits. The proposed mathematical model for determining the optimum thickness of thermal insulation with the use of a metacriterion is a kind of generalization of earlier models from the literature.


2021 ◽  
pp. 111030
Author(s):  
Jianming Yang ◽  
Huijun Wu ◽  
Xinhua Xu ◽  
Gongsheng Huang ◽  
Jian Cen ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2285 ◽  
Author(s):  
Tomasz Rymarczyk ◽  
Grzegorz Kłosowski ◽  
Edward Kozłowski

This article presents the results of research on a new method of spatial analysis of walls and buildings moisture. Due to the fact that destructive methods are not suitable for historical buildings of great architectural significance, a non-destructive method based on electrical tomography has been adopted. A hybrid tomograph with special sensors was developed for the measurements. This device enables the acquisition of data, which are then reconstructed by appropriately developed methods enabling spatial analysis of wet buildings. Special electrodes that ensure good contact with the surface of porous building materials such as bricks and cement were introduced. During the research, a group of algorithms enabling supervised machine learning was analyzed. They have been used in the process of converting input electrical values into conductance depicted by the output image pixels. The conductance values of individual pixels of the output vector made it possible to obtain images of the interior of building walls as both flat intersections (2D) and spatial (3D) images. The presented group of algorithms has a high application value. The main advantages of the new methods are: high accuracy of imaging, low costs, high processing speed, ease of application to walls of various thickness and irregular surface. By comparing the results of tomographic reconstructions, the most efficient algorithms were identified.


Sign in / Sign up

Export Citation Format

Share Document